You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
None
Plasma catalysis is gaining increasing interest for various gas conversion applications, such as CO2 conversion into value-added chemicals and fuels, N2 fixation for the synthesis of NH3 or NOx, methane conversion into higher hydrocarbons or oxygenates. It is also widely used for air pollution control (e.g., VOC remediation). Plasma catalysis allows thermodynamically difficult reactions to proceed at ambient pressure and temperature, due to activation of the gas molecules by energetic electrons created in the plasma. However, plasma is very reactive but not selective, and thus a catalyst is needed to improve the selectivity. In spite of the growing interest in plasma catalysis, the underlying mechanisms of the (possible) synergy between plasma and catalyst are not yet fully understood. Indeed, plasma catalysis is quite complicated, as the plasma will affect the catalyst and vice versa. Moreover, due to the reactive plasma environment, the most suitable catalysts will probably be different from thermal catalysts. More research is needed to better understand the plasma–catalyst interactions, in order to further improve the applications.
Volume 45 of Reviews in Mineralogy and Geochemistry is a new and expanded update of Volume 4 from 1977. Most of the material in this volume is entirely new, and Natural Zeolites: Occurrence, Properties, Applications presents a fresh and expanded look at many of the subjects contained in Volume 4. There has been an explosion in our knowledge of the crystal chemistry and structures of natural zeolites (Chapters 1 and 2), due in part to the now-common Rietveld method that allows treatment of powder diffraction data. Studies on the geochemistry of natural zeolites have also greatly increased, partly as a result of the interests related to the disposal of radioactive wastes, and Chapters 3, 4, 5,...
The increase of greenhouse gases in the atmosphere and the decrease of the available amount of fossil fuels necessitate finding new alternative and sustainable energy sources in the near future. This book summarizes the role and the possibilities of catalysis in the production of new energy carriers and in the utilization of different energy sources. The main goal of this work is to go beyond those results discussed in recent literature by identifying new developments that may lead to breakthroughs in the production of alternative energy. The book discusses the use of biomass or biomass derived materials as energy sources, hydrogen formation in methanol and ethanol reforming, biodiesel production, and the utilization of biogases. Separate sections also deal with fuel cells, photocatalysis, and solar cells, which are all promising processes for energy production that depend heavily on catalysts.
Energy – in the headlines, discussed controversially, vital. The use of regenerative energy in many primary forms leads to the necessity to store grid dimensions for maintaining continuous supply and enabling the replacement of fossil fuel systems. Chemical energy storage is one of the possibilities besides mechano-thermal and biological systems. This work starts with the more general aspects of chemical energy storage in the context of the geosphere and evolves to dealing with aspects of electrochemistry, catalysis, synthesis of catalysts, functional analysis of catalytic processes and with the interface between electrochemistry and heterogeneous catalysis. Top-notch experts provide a sound, practical, hands-on insight into the present status of energy conversion aimed primarily at the young emerging research front.
The study of surfaces has experienced dramatic growth over the past decade. Now, the editors of the internationally celebrated series Advances in Chemical Physics have brought together in this self-contained, special topic volume contributions from leading researchers in the field treating some of the most crucial aspects of the experimental and theoretical study of surfaces. This work delves into such core issues as: * Kinetics and dynamics of hydrogen adsorption on silicon surfaces. * Potential energy surfaces of transition- metal-catalyzed chemical reactions. * High-resolution helium atom scattering as a proof of surface vibrations. * Ordering and phase transitions in adsorbed monolayers of diatomic molecules. * The influence of dimensionality on static and dynamic properties of a system. * New applications to fields as varied as catalysts and the passage of molecules through membranes. This valuable resource provides important insights into the current state of knowledge about surface properties. Prigogine and Rice's latest work will stimulate the imagination and motivate the exploration of other aspects of this fascinating subject.
"Handbook of Natural Zeolites provides a comprehensive and updated summary of all important aspects of natural zeolites science and technology. The e-book contains four sections covering the relevant scientific background, established technologies, recent "
Authored by 50 top academic, government and industry researchers, this handbook explores mature, evolving technologies for a clean, economically viable alternative to non-renewable energy. In so doing, it also discusses such broader topics as the environmental impact, education, safety and regulatory developments. The text is all-encompassing, covering a wide range that includes hydrogen as an energy carrier, hydrogen for storage of renewable energy, and incorporating hydrogen technologies into existing technologies.
Good,No Highlights,No Markup,all pages are intact, Slight Shelfwear,may have the corners slightly dented, may have slight color changes/slightly damaged spine.