You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book uses a mathematical approach to deriving the laws of science and technology, based upon the concept of Fisher information. The approach that follows from these ideas is called the principle of Extreme Physical Information (EPI). The authors show how to use EPI to determine the theoretical input/output laws of unknown systems. Will benefit readers whose math skill is at the level of an undergraduate science or engineering degree.
One major problem of contemporary physics is posed by the incompatibility of the two greatest theories of the 20th century: quantum mechanics (QM) and general relativity (GR). Joining them gives rise to a perturbatively non-renormalizable quantum gravity theory. The two theories, on their own, have been amazingly successful, and quantum mechanics, in particular, gave rise to many of the recent technical advances that have revolutionized our lives. Today, however, there is a lack of an over-arching theoretical framework within which both QM and GR successes could be accommodated. This book provides an accessible guideline to a possible over-arching framework, based on well-known mathematical structures.
The Thirty-First International Workshop on Condensed Matter Theories (CMT31) held in Bangkok focused on the many roles played by ab initio theory, modeling, and high-performance computing in condensed matter and materials science, providing a forum for the discussion of recent advances and exploration of new problems. Fifty-six invited papers were presented, of which 38 appear as chapters in this volume. Reports of recent results generated lively debate on two-dimensional electron systems, the metal-insulator transition, dilute magnetic semiconductors, effects of disorder, magnetoresistence phenomena, ferromagnetic stripes, quantum Hall systems, strongly correlated Fermi systems, superconductivity, dilute fermionic and bosonic gases, nanostructured materials, plasma instabilities, quantum fluid mixtures, and helium in reduced geometries.
The Thirty-First International Workshop on Condensed Matter Theories (CMT31) held in Bangkok focused on the many roles played by ab initio theory, modeling, and high-performance computing in condensed matter and materials science, providing a forum for the discussion of recent advances and exploration of new problems. Fifty-six invited papers were presented, of which 38 appear as chapters in this volume. Reports of recent results generated lively debate on two-dimensional electron systems, the metal-insulator transition, dilute magnetic semiconductors, effects of disorder, magnetoresistence phenomena, ferromagnetic stripes, quantum Hall systems, strongly correlated Fermi systems, superconductivity, dilute fermionic and bosonic gases, nanostructured materials, plasma instabilities, quantum fluid mixtures, and helium in reduced geometries.
The Second Law, a cornerstone of thermodynamics, governs the average direction of dissipative, non-equilibrium processes. But it says nothing about their actual rates or the probability of fluctuations about the average. This interdisciplinary book, written and peer-reviewed by international experts, presents recent advances in the search for new non-equilibrium principles beyond the Second Law, and their applications to a wide range of systems across physics, chemistry and biology. Beyond The Second Law brings together traditionally isolated areas of non-equilibrium research and highlights potentially fruitful connections between them, with entropy production playing the unifying role. Key ...
Since the introduction of the information measure widely known as Shannon entropy, quantifiers based on information theory and concepts such as entropic forms and statistical complexities have proven to be useful in diverse scientific research fields. This book contains introductory tutorials suitable for the general reader, together with chapters dedicated to the basic concepts of the most frequently employed information measures or quantifiers and their recent applications to different areas, including physics, biology, medicine, economics, communication and social sciences. As these quantifiers are powerful tools for the study of general time and data series independently of their sources, this book will be useful to all those doing research connected with information analysis. The tutorials in this volume are written at a broadly accessible level and readers will have the opportunity to acquire the knowledge necessary to use the information theory tools in their field of interest.
Combining physics and philosophy, this is a uniquely interdisciplinary examination of quantum information science. Suitable as both a discussion of the conceptual and philosophical problems of this field and a comprehensive stand-alone introduction, this book will benefit both experienced and new researchers in quantum information and the philosophy of physics.
None
The orientation and physical context of the CMT Series of Workshops have always been cross-disciplinary, but with an emphasis placed on the common concerns of theorists applying many-particle concepts in diverse areas of physics. In this spirit, CMT33 chose to focus special attention on exotic fermionic and bosonic systems, quantum magnets and their quantum and thermal phase transitions, novel condensed matter systems for renewable energy sources, the physics of nanosystems and nanotechnology, and applications of molecular dynamics and density functional theory./a