You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book follows on from Volume 83 in the SCBI series (“Macromolecular Protein Complexes”), and addresses several important topics (such as the Proteasome, Anaphase Promoting Complex, Ribosome and Apoptosome) that were not previously included, together with a number of additional exciting topics in this rapidly expanding field of study. Although the first SCBI Protein Complex book focused on soluble protein complexes, the second (Vol. 87)addressed Membrane Complexes, and the third (Vol. 88) put the spotlight on Viral Protein and Nucleoprotein Complexes, a number of membrane, virus and even fibrillar protein complexes have been be considered for inclusion in the present book. A further book is also under preparation that follows the same pattern, in an attempt to provide a thorough coverage of the subject. Chapter 9 is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
Extensively revised and updated, the new edition of the highly regarded Handbook of Proteolytic Enzymes is an essential reference for biochemists, biotechnologists and molecular biologists. Edited by world-renowned experts in the field, this comprehensive work provides detailed information on all known proteolytic enzymes to date. This two-volume set unveils new developments on proteolytic enzymes which are being investigatedin pharmaceutical research for such diseases as HIV, Hepatitis C, and the common cold. Volume I covers aspartic and metallo petidases while Volume II examines peptidases of cysteine, serine, threonine and unknown catalytic type. A CD-ROM accompanies the book containing f...
The role of metal ions in protein folding and structure is a critical topic to a range of scientists in numerous fields, particularly those working in structural biology and bioinorganic chemistry, those studying protein folding and disease, and those involved in the molecular and cellular aspects of metals in biological systems. Protein Folding an
The Many Faces of RNA is the subject for the eighth SmithKline Beecham Pharmaceuticals Research Symposia. It highlights a rapidly developing area of scientific investigation. The style and format are deliberately designed to promote in-depth presentations and discussions and to facilitate the forging of collaborations between academic and industrial partners.This symposium focuses on several of the many fundamental, advancing strategies for exploring RNA and its functions. It emphasizes the interplay between biology, chemistry, genomics, and molecular biology which is leading to exciting new insights and avenues of investigation. The book explores RNA as a therapeutic target, RNA as a tool, RNA and its interactions, along with chemical, computational, and structural investigations.
Science and Faith Can—and Do—Support Each Other Science and Christianity are often presented as opposites, when in fact the order of the universe and the complexity of life powerfully testify to intelligent design. With this comprehensive resource that includes the latest research, you’ll witness how the findings of scientists provide compelling reasons to acknowledge the mind and presence of a creator. Featuring more than 45 entries by top-caliber experts, you’ll better understand… how scientific concepts like intelligent design are supported by evidence the scientific findings that support the history and accounts found in the Bible the biases that lead to scientific information being presented as a challenge—rather than a complement—to Christianity Whether you’re looking for answers to your own questions or seeking to explain the case for intelligent design to others, The Comprehensive Guide to Science and Faith is an invaluable apologetic tool that will help you explore and analyze the relevant facts, research, and theories in light of biblical truth.
This book consists of nine chapters covering a variety of bioinformatics subjects, ranging from database resources for protein allergens, unravelling genetic determinants of complex disorders, characterization and prediction of regulatory motifs, computational methods for identifying the best classifiers and key disease genes in large-scale transcriptomic and proteomic experiments, functional characterization of inherently unfolded proteins/regions, protein interaction networks and flexible protein-protein docking. The computational algorithms are in general presented in a way that is accessible to advanced undergraduate students, graduate students and researchers in molecular biology and genetics. The book should also serve as stepping stones for mathematicians, biostatisticians, and computational scientists to cross their academic boundaries into the dynamic and ever-expanding field of bioinformatics.