You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The authors here provide a detailed treatment of the design of robust adaptive controllers for nonlinear systems with uncertainties. They employ a new tool based on the ideas of system immersion and manifold invariance. New algorithms are delivered for the construction of robust asymptotically-stabilizing and adaptive control laws for nonlinear systems. The methods proposed lead to modular schemes that are easier to tune than their counterparts obtained from Lyapunov redesign.
This monograph couples output regulation with several recent developments in modern control theory. It re-examines output regulation theory to achieve a design of controllers that take into account the physical limiting characteristics of actuators such as saturation. The book provides a solution to the basic problem of finding a controller that achieves internal stabilization, results in a desired performance norm, and renders asymptotic tracking of a reference signal even in the presence of persistent disturbances.
This is a self-contained introduction to algebraic control for nonlinear systems suitable for researchers and graduate students. It is the first book dealing with the linear-algebraic approach to nonlinear control systems in such a detailed and extensive fashion. It provides a complementary approach to the more traditional differential geometry and deals more easily with several important characteristics of nonlinear systems.
Moving on from earlier stochastic and robust control paradigms, this book introduces the fundamentals of probabilistic methods in the analysis and design of uncertain systems. The use of randomized algorithms, guarantees a reduction in the computational complexity of classical robust control algorithms and in the conservativeness of methods like H-infinity control. Features: • self-contained treatment explaining randomized algorithms from their genesis in the principles of probability theory to their use for robust analysis and controller synthesis; • comprehensive treatment of sample generation, including consideration of the difficulties involved in obtaining independent and identically distributed samples; • applications in congestion control of high-speed communications networks and the stability of quantized sampled-data systems. This monograph will be of interest to theorists concerned with robust and optimal control techniques and to all control engineers dealing with system uncertainties.
This book deals with the class of singular systems with random abrupt changes also known as singular Markovian jump systems. Various problems and their robustness are tackled. The book examines both the theoretical and practical aspects of the control problems from the angle of the structural properties of linear systems. It can be used as a textbook as well as a reference for researchers in control or mathematics with interest in control theory.
This monograph studies the design of robust, monotonically-convergent iterative learning controllers for discrete-time systems. It presents a unified analysis and design framework that enables designers to consider both robustness and monotonic convergence for typical uncertainty models, including parametric interval uncertainties, iteration-domain frequency uncertainty, and iteration-domain stochastic uncertainty. The book shows how to use robust iterative learning control in the face of model uncertainty.
Switched linear systems have enjoyed a particular growth in interest since the 1990s. The large amount of data and ideas thus generated have, until now, lacked a co-ordinating framework to focus them effectively on some of the fundamental issues such as the problems of robust stabilizing switching design, feedback stabilization and optimal switching. This deficiency is resolved by this book which features: nucleus of constructive design approaches based on canonical decomposition and forming a sound basis for the systematic treatment of secondary results; theoretical exploration and logical association of several independent but pivotal concerns in control design as they pertain to switched linear systems: controllability and observability, feedback stabilization, optimization and periodic switching; a reliable foundation for further theoretical research as well as design guidance for real life engineering applications through the integration of novel ideas, fresh insights and rigorous results.
This book reviews new results in the application of polynomial and rational matrices to continuous- and discrete-time systems. It provides the reader with rigorous and in-depth mathematical analysis of the uses of polynomial and rational matrices in the study of dynamical systems. It also throws new light on the problems of positive realization, minimum-energy control, reachability, and asymptotic and robust stability.
The purpose of this book is to present a self-contained description of the fun damentals of the theory of nonlinear control systems, with special emphasis on the differential geometric approach. The book is intended as a graduate text as weil as a reference to scientists and engineers involved in the analysis and design of feedback systems. The first version of this book was written in 1983, while I was teach ing at the Department of Systems Science and Mathematics at Washington University in St. Louis. This new edition integrates my subsequent teaching experience gained at the University of Illinois in Urbana-Champaign in 1987, at the Carl-Cranz Gesellschaft in Oberpfaffenhofen in 1987, at the University of California in Berkeley in 1988. In addition to a major rearrangement of the last two Chapters of the first version, this new edition incorporates two additional Chapters at a more elementary level and an exposition of some relevant research findings which have occurred since 1985.
Although the problem of nonlinear controller design is as old as that of linear controller design, the systematic design methods framed in response are more sparse. Given the range and complexity of nonlinear systems, effective new methods of control design are therefore of significant importance. Dynamic Surface Control of Uncertain Nonlinear Systems provides a theoretically rigorous and practical introduction to nonlinear control design. The convex optimization approach applied to good effect in linear systems is extended to the nonlinear case using the new dynamic surface control (DSC) algorithm developed by the authors. A variety of problems – DSC design, output feedback, input saturat...