Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Quantum Kinetics in Transport and Optics of Semiconductors
  • Language: en
  • Pages: 365

Quantum Kinetics in Transport and Optics of Semiconductors

The state-of-the-art of quantum transport and quantum kinetics in semiconductors, plus the latest applications, are covered in this monograph. Since the publishing of the first edition in 1996, the nonequilibrium Green function technique has been applied to a large number of new research topics, and the revised edition introduces the reader to many of these areas. This book is both a reference work for researchers and a self-tutorial for graduate students.

Quantum Aspects of Life
  • Language: en
  • Pages: 469

Quantum Aspects of Life

A quantum origin of life? -- Quantum mechanics and emergence -- Quantum coherence and the search for the first replicator -- Ultrafast quantum dynamics in photosynthesis -- Modelling quantum decoherence in biomolecules -- Molecular evolution -- Memory depends on the cytoskeleton, but is it quantum? -- Quantum metabolism and allometric scaling relations in biology -- Spectroscopy of the genetic code -- Towards understanding the origin of genetic languages -- Can arbitrary quantum systems undergo self-replication? -- A semi-quantum version of the game of life -- Evolutionary stability in quantum games -- Quantum transmemetic intelligence -- Dreams versus reality : plenary debate session on quantum computing -- Plenary debate: quantum effects in biology : trivial or not? -- Nontrivial quantum effects in biology : a skeptical physicists' view -- That's life! : the geometry of p electron clouds.

Sub-Micron Semiconductor Devices
  • Language: en
  • Pages: 410

Sub-Micron Semiconductor Devices

  • Type: Book
  • -
  • Published: 2022-05-10
  • -
  • Publisher: CRC Press

This comprehensive reference text discusses novel semiconductor devices, including nanostructure field-effect transistors, photodiodes, high electron mobility transistors, and oxide-based devices. The text covers submicron semiconductor devices, device modeling, novel materials for devices, novel semiconductor devices, optimization techniques, and their application in detail. It covers such important topics as negative capacitance devices, surface-plasmon resonance devices, Fermi-level pinning, external stimuli-based optimization techniques, optoelectronic devices, and architecture-based optimization techniques. The book: Covers novel semiconductor devices with submicron dimensions Discusses comprehensive device optimization techniques Examines conceptualization and modeling of semiconductor devices Covers circuit and sensor-based application of the novel devices Discusses novel materials for next-generation devices This text will be useful for graduate students and professionals in fields including electrical engineering, electronics and communication engineering, materials science, and nanoscience.

Physics of Low-Dimensional Semiconductor Structures
  • Language: en
  • Pages: 597

Physics of Low-Dimensional Semiconductor Structures

Presenting the latest advances in artificial structures, this volume discusses in-depth the structure and electron transport mechanisms of quantum wells, superlattices, quantum wires, and quantum dots. It will serve as an invaluable reference and review for researchers and graduate students in solid-state physics, materials science, and electrical and electronic engineering.

Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures
  • Language: en
  • Pages: 243

Plasmonics and Light–Matter Interactions in Two-Dimensional Materials and in Metal Nanostructures

This thesis presents a comprehensive theoretical description of classical and quantum aspects of plasmonics in three and two dimensions, and also in transdimensional systems containing elements with different dimensionalities. It focuses on the theoretical understanding of the salient features of plasmons in nanosystems as well as on the multifaceted aspects of plasmon-enhanced light–matter interactions at the nanometer scale. Special emphasis is given to the modeling of nonclassical behavior across the transition regime bridging the classical and the quantum domains. The research presented in this dissertation provides useful tools for understanding surface plasmons in various two- and three-dimensional nanostructures, as well as quantum mechanical effects in their response and their joint impact on light–matter interactions at the extreme nanoscale. These contributions constitute novel and solid advancements in the research field of plasmonics and nanophotonics that will help guide future experimental investigations in the blossoming field of nanophotonics, and also facilitate the design of the next generation of truly nanoscale nanophotonic devices.

Progress In Nonequilibrium Green's Functions, Sep 99, Germany
  • Language: en
  • Pages: 586

Progress In Nonequilibrium Green's Functions, Sep 99, Germany

Equilibrium and nonequilibrium properties of correlated many-body systems are of growing interest in many fields of physics, including condensed matter, dense plasmas, nuclear matter and particles. The most powerful and general method which applies equally to all these areas is given by quantum field theory.Written by the leading experts and understandable to non-specialists, this book provides an overview on the basic ideas and concepts of the method of nonequilibrium Green's functions. It is complemented by modern applications of the method to a variety of topics, such as optics and transport in dense plasmas and semiconductors; correlations, bound states and coherence; strong field effects and short-pulse lasers; nuclear matter and QCD.Authors include: Gordon Bayan, Pawel Danielewicz, Don DuBois, Hartmut Haug, Klaus Henneberger, Antti-Pekka Jauho, Jörn Kuoll, Dietrich Kremp, Pavel Lipavsky and Paul C Martin.

An Introduction To Graphene Plasmonics
  • Language: en
  • Pages: 462

An Introduction To Graphene Plasmonics

This book is meant as an introduction to graphene plasmonics and aims at the advanced undergraduate and graduate students entering the field of plasmonics in graphene. In it different theoretical methods are introduced, starting with an elementary description of graphene plasmonics and evolving towards more advanced topics. This book is essentially self-contained and brings together a number of different topics about the field that are scattered in the vast literature. The text is composed of eleven chapters and of a set of detailed appendices. It can be read in two different ways: Reading only the chapters to get acquainted with the field of plasmonics in graphene or reading the chapters and studying the appendices to get a working knowledge of the topic. The study of the material in this book will bring the students to the forefront of the research in this field.

Strongly Correlated Systems, Coherence And Entanglement
  • Language: en
  • Pages: 612

Strongly Correlated Systems, Coherence And Entanglement

This volume presents a collection of review papers on recent work in the connected areas of strongly correlated systems, the effects of coherence on macroscopic systems, and entanglement in quantum systems. These areas have attracted considerable interest due to their complexity and associated unexpected nontrivial phenomena, and also due to their potential applications in various fields, from materials science to information technology. The coverage includes strongly correlated electronic systems such as low-dimensional complex materials, ordered and disordered spin systems, and aspects of the physics of manganites and graphene, both in equilibrium and far from equilibrium.

Theory of Semiconductor Quantum Devices
  • Language: en
  • Pages: 382

Theory of Semiconductor Quantum Devices

Primary goal of this book is to provide a cohesive description of the vast field of semiconductor quantum devices, with special emphasis on basic quantum-mechanical phenomena governing the electro-optical response of new-generation nanomaterials. The book will cover within a common language different types of optoelectronic nanodevices, including quantum-cascade laser sources and detectors, few-electron/exciton quantum devices, and semiconductor-based quantum logic gates. The distinguishing feature of the present volume is a unified microscopic treatment of quantum-transport and coherent-optics phenomena on ultrasmall space- and time-scales, as well as of their semiclassical counterparts.

Computational Electronics
  • Language: en
  • Pages: 782

Computational Electronics

  • Type: Book
  • -
  • Published: 2017-12-19
  • -
  • Publisher: CRC Press

Starting with the simplest semiclassical approaches and ending with the description of complex fully quantum-mechanical methods for quantum transport analysis of state-of-the-art devices, Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation provides a comprehensive overview of the essential techniques and methods for effectively analyzing transport in semiconductor devices. With the transistor reaching its limits and new device designs and paradigms of operation being explored, this timely resource delivers the simulation methods needed to properly model state-of-the-art nanoscale devices. The first part examines semiclassical transport methods, including drift...