You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Data Mining is the process of analyzing large amount of data in search of previously undiscovered business patterns. Data Warehousing is a relational/multidimensional database that is designed for Query and Analysis rather than Transaction Processing. This book provides a systematic introduction to the principles of Data Mining and Data Warehousing. It covers the entire range of data mining algorithms (prediction, classification, and association), data mining products and applications, stages.
This book explores the concepts of data mining and data warehousing, a promising and flourishing frontier in data base systems and new data base applications and is also designed to give a broad, yet in-depth overview of the field of data mining. Data mining is a multidisciplinary field, drawing work from areas including database technology, AI, machine learning, NN, statistics, pattern recognition, knowledge based systems, knowledge acquisition, information retrieval, high performance computing and data visualization. This book is intended for a wide audience of readers who are not necessarily experts in data warehousing and data mining, but are interested in receiving a general introduction to these areas and their many practical applications. Since data mining technology has become a hot topic not only among academic students but also for decision makers, it provides valuable hidden business and scientific intelligence from a large amount of historical data. It is also written for technical managers and executives as well as for technologists interested in learning about data mining.
This book presents the thoroughly refereed joint postproceedings of the 4th International Workshop on Knowledge Discovery in Inductive Databases, October 2005. 20 revised full papers presented together with 2 are reproduced here. Bringing together the fields of databases, machine learning, and data mining, the papers address various current topics in knowledge discovery and data mining in the framework of inductive databases such as constraint-based mining, database technology and inductive querying.
This three-volume set LNAI 8188, 8189 and 8190 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2013, held in Prague, Czech Republic, in September 2013. The 111 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 447 submissions. The papers are organized in topical sections on reinforcement learning; Markov decision processes; active learning and optimization; learning from sequences; time series and spatio-temporal data; data streams; graphs and networks; social network analysis; natural language processing and information extraction; ranking and recommender systems; matrix and tensor analysis; structured output prediction, multi-label and multi-task learning; transfer learning; bayesian learning; graphical models; nearest-neighbor methods; ensembles; statistical learning; semi-supervised learning; unsupervised learning; subgroup discovery, outlier detection and anomaly detection; privacy and security; evaluation; applications; and medical applications.
This book presents the refereed proceedings of the 8th International Conference on Advanced Information Systems Engineering, CAiSE '96, held in Herakleion, Crete, Greece, in May 1996. The 30 revised full papers included in the book were selected from a total of some 100 submissions. The book is organised in sections on CASE environments, temporal and active database technologies, experience reports, interoperability in information systems, formal methods in system development, novel architectures, workflow management and distributed information systems, information modelling, object-oriented database design, and semantic links and abstraction.
This book constitutes the refereed proceedings of the 11th International Conference on Intelligent Data Analysis, IDA 2012, held in Helsinki, Finland, in October 2012. The 32 revised full papers presented together with 3 invited papers were carefully reviewed and selected from 88 submissions. All current aspects of intelligent data analysis are addressed, including intelligent support for modeling and analyzing data from complex, dynamical systems. The papers focus on novel applications of IDA techniques to, e.g., networked digital information systems; novel modes of data acquisition and the associated issues; robustness and scalability issues of intelligent data analysis techniques; and visualization and dissemination results.
This book constitutes the refereed proceedings of the 6th International Conference on Intelligent Data Analysis, IDA 2005, held in Madrid, Spain in September 2005. The 46 revised papers presented together with two tutorials and two invited talks were carefully reviewed and selected from 184 submissions. All current aspects of this interdisciplinary field are addressed; the areas covered include statistics, machine learning, data mining, classification and pattern recognition, clustering, applications, modeling, and interactive dynamic data visualization.
This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionalit...
The book aims to merge Computational Intelligence with Data Mining, which are both hot topics of current research and industrial development, Computational Intelligence, incorporates techniques like data fusion, uncertain reasoning, heuristic search, learning, and soft computing. Data Mining focuses on unscrambling unknown patterns or structures in very large data sets. Under the headline "Discovering Structures in Large Databases” the book starts with a unified view on ‘Data Mining and Statistics – A System Point of View’. Two special techniques follow: ‘Subgroup Mining’, and ‘Data Mining with Possibilistic Graphical Models’. "Data Fusion and Possibilistic or Fuzzy Data Anal...