You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This first textbook on multi-relational data mining and inductive logic programming provides a complete overview of the field. It is self-contained and easily accessible for graduate students and practitioners of data mining and machine learning.
1 “Change is inevitable.” Embracing this quote we have tried to carefully exp- iment with the format of this conference, the 15th International Conference on Inductive Logic Programming, hopefully making it even better than it already was. But it will be up to you, the inquisitive reader of this book, to judge our success. The major changes comprised broadening the scope of the conference to include more diverse forms of non-propositional learning, to once again have tutorials on exciting new areas, and, for the ?rst time, to also have a discovery challenge as a platform for collaborative work. This year the conference was co-located with ICML 2005, the 22nd Inter- tional Conference on M...
This book constitutes the refereed proceedings of the 13th International Conference on Inductive Logic Programming, ILP 2003, held in Szeged, Hungary in September/October 2003. The 23 revised full papers presented were carefully reviewed and selected from 53 submissions. Among the topics addressed are multirelational data mining, complexity issues, theory revision, clustering, mathematical discovery, relational reinforcement learning, multirelational learning, inductive inference, description logics, grammar systems, and inductive learning.
This book constitutes the thoroughly refereed post-proceedings of the 12th International Conference on Inductive Logic Programming, ILP 2002, held in Sydney, Australia in July 2002. The 22 revised full papers presented were carefully selected during two rounds of reviewing and revision from 45 submissions. Among the topics addressed are first order decision lists, learning with description logics, bagging in ILP, kernel methods, concept learning, relational learners, description logic programs, Bayesian classifiers, knowledge discovery, data mining, logical sequences, theory learning, stochastic logic programs, machine discovery, and relational pattern discovery.
This book constitutes the refereed proceedings of the 12th European Conference on Machine Learning, ECML 2001, held in Freiburg, Germany, in September 2001. The 50 revised full papers presented together with four invited contributions were carefully reviewed and selected from a total of 140 submissions. Among the topics covered are classifier systems, naive-Bayes classification, rule learning, decision tree-based classification, Web mining, equation discovery, inductive logic programming, text categorization, agent learning, backpropagation, reinforcement learning, sequence prediction, sequential decisions, classification learning, sampling, and semi-supervised learning.
The three volume set LNAI 9851, LNAI 9852, and LNAI 9853 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases, ECML PKDD 2016, held in Riva del Garda, Italy, in September 2016. The 123 full papers and 16 short papers presented were carefully reviewed and selected from a total of 460 submissions. The papers presented focus on practical and real-world studies of machine learning, knowledge discovery, data mining; innovative prototype implementations or mature systems that use machine learning techniques and knowledge discovery processes in a real setting; recent advances at the frontier of machine learning and data mining with other disciplines. Part I and Part II of the proceedings contain the full papers of the contributions presented in the scientific track and abstracts of the scientific plenary talks. Part III contains the full papers of the contributions presented in the industrial track, short papers describing demonstration, the nectar papers, and the abstracts of the industrial plenary talks.
This book constitutes the refereed proceedings of the 11th International Conference on Inductive Logic Programming, ILP 2001, held in Strasbourg, France in September 2001. The 21 revised full papers presented were carefully reviewed and selected from 37 submissions. Among the topics addressed are data mining issues for multi-relational databases, supervised learning, inductive inference, Bayesian reasoning, learning refinement operators, neural network learning, constraint satisfaction, genetic algorithms, statistical machine learning, transductive inference, etc.
This book constitutes the thoroughly refereed post-proceedings of the 16th International Conference on Inductive Logic Programming, ILP 2006, held in Santiago de Compostela, Spain, in August 2006. The papers address all current topics in inductive logic programming, ranging from theoretical and methodological issues to advanced applications.
This book constitutes the thoroughly refereed post-proceedings of the 23rd International Conference on Inductive Logic Programming, ILP 2013, held in Rio de Janeiro, Brazil, in August 2013. The 9 revised extended papers were carefully reviewed and selected from 42 submissions. The conference now focuses on all aspects of learning in logic, multi-relational learning and data mining, statistical relational learning, graph and tree mining, relational reinforcement learning, and other forms of learning from structured data.
This book is intended for business professionals that want to understand the fundamental concepts of Artificial Intelligence, their applications and limitations. Built as a collaborative effort between academia and the industry, this book bridges the gap between theory and business application, demystifying AI through fundamental concepts and industry examples. The reader will find here an overview of the different AI techniques to search, plan, reason, learn, adapt, understand and interact. The book covers the two traditional paradigms in AI: the statistical and data-driven AI systems, which learn and perform by ingesting millions of data points into machine learning algorithms, and the consciously modelled AI systems, known as symbolic AI systems, which use explicit symbols to represent the world and make conclusions. Rather than opposing those two paradigms, the book will also show how those different fields can complement each other. All royalties go to a charity. “Demystifying AI reveals its true power: not as a mysterious force, but as a tool for human progress, accessible to all who seek to understand it.” Dr. Barak Chizi, Chief Data & Analytics Officer, KBC Group