You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This volume contains the proceedings of the International Conference on Group Theory, Combinatorics and Computing held from October 3-8, 2012, in Boca Raton, Florida. The papers cover a number of areas in group theory and combinatorics. Topics include finite simple groups, groups acting on structured sets, varieties of algebras, classification of groups generated by 3-state automata over a 2-letter alphabet, new methods for construction of codes and designs, groups with constraints on the derived subgroups of its subgroups, graphs related to conjugacy classes in groups, and lexicographical configurations. Application of computer algebra programs is incorporated in several of the papers. This volume includes expository articles on finite coverings of loops, semigroups and groups, and on the application of algebraic structures in the theory of communications. This volume is a valuable resource for researchers and graduate students working in group theory and combinatorics. The articles provide excellent examples of the interplay between the two areas.
This volume contains the proceedings of the AMS Special Session on Higher Structures in Topology, Geometry, and Physics, held virtually on March 26–27, 2022. The articles give a snapshot survey of the current topics surrounding the mathematical formulation of field theories. There is an intricate interplay between geometry, topology, and algebra which captures these theories. The hallmark are higher structures, which one can consider as the secondary algebraic or geometric background on which the theories are formulated. The higher structures considered in the volume are generalizations of operads, models for conformal field theories, string topology, open/closed field theories, BF/BV formalism, actions on Hochschild complexes and related complexes, and their geometric and topological aspects.
This is the third volume of a comprehensive and elementary treatment of finite p-group theory. Topics covered in this volume: impact of minimal nonabelian subgroups on the structure of p-groups, classification of groups all of whose nonnormal subgroups have the same order, degrees of irreducible characters of p-groups associated with finite algebras, groups covered by few proper subgroups, p-groups of element breadth 2 and subgroup breadth 1, exact number of subgroups of given order in a metacyclic p-group, soft subgroups, p-groups with a maximal elementary abelian subgroup of order p2, p-groups generated by certain minimal nonabelian subgroups, p-groups in which certain nonabelian subgroups are 2-generator. The book contains many dozens of original exercises (with difficult exercises being solved) and a list of about 900 research problems and themes.
Classification of Finite Simple Groups (CFSG) is a major project involving work by hundreds of researchers. The work was largely completed by about 1983, although final publication of the “quasithin” part was delayed until 2004. Since the 1980s, CFSG has had a huge influence on work in finite group theory and in many adjacent fields of mathematics. This book attempts to survey and sample a number of such topics from the very large and increasingly active research area of applications of CFSG. The book is based on the author's lectures at the September 2015 Venice Summer School on Finite Groups. With about 50 exercises from original lectures, it can serve as a second-year graduate course for students who have had first-year graduate algebra. It may be of particular interest to students looking for a dissertation topic around group theory. It can also be useful as an introduction and basic reference; in addition, it indicates fuller citations to the appropriate literature for readers who wish to go on to more detailed sources.
Selected papers presented at the international conference on group theory held at St. Andrews in 1989 are combined in two volumes. The themes of the conference were combinatorial and computational group theory.
This is the sixth volume of a comprehensive and elementary treatment of finite group theory. This volume contains many hundreds of original exercises (including solutions for the more difficult ones) and an extended list of about 1000 open problems. The current book is based on Volumes 1–5 and it is suitable for researchers and graduate students working in group theory.
Survey and research articles from the Bielefeld conference on topological, combinatorial and arithmetic aspects of groups.
Experts in the theory of finite groups and in representation theory provide insight into various aspects of group theory, such as the classification of finite simple groups, character theory, groups with special properties, table algebras, etc. Information for our distributors include: This book is co-published with Bar-Ilan University (Ramat-Gan, Israel).
This book provides a detailed exposition of a wide range of topics in geometric group theory, inspired by Gromov’s pivotal work in the 1980s. It includes classical theorems on nilpotent groups and solvable groups, a fundamental study of the growth of groups, a detailed look at asymptotic cones, and a discussion of related subjects including filters and ultrafilters, dimension theory, hyperbolic geometry, amenability, the Burnside problem, and random walks on groups. The results are unified under the common theme of Gromov’s theorem, namely that finitely generated groups of polynomial growth are virtually nilpotent. This beautiful result gave birth to a fascinating new area of research wh...