You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
RNA processing plays a critical role in realizing the full potential of a given genome. One means of achieving protein diversity is through RNA editing. A diverse array of editing events has been characterized, affecting gene expression in organisms from viruses and single cell parasites to humans and plants. The variety of editing mechanisms has required the development of many different experimental approaches, many of which are likely to be broadly applicable, particularly given the interplay between editing and other cellular processes, including transcription, splicing, and RNA silencing. RNA Editing not only covers most of the principal methods employed in the field, but also offers innovative solutions to the significant challenges posed by these experimental systems. - Presents newly developed methods - Covers topics ranging from biochemistry to bioinformatics - Includes innovative solutions to potential problems
The past decade has witnessed an explosion of our knowledge on the structure, coding capacity and evolution of the genomes of the two DNA-containing cell organelles in plants: chloroplasts (plastids) and mitochondria. Comparative genomics analyses have provided new insights into the origin of organelles by endosymbioses and uncovered an enormous evolutionary dynamics of organellar genomes. In addition, they have greatly helped to clarify phylogenetic relationships, especially in algae and early land plants with limited morphological and anatomical diversity. This book, written by leading experts, summarizes our current knowledge about plastid and mitochondrial genomes in all major groups of algae and land plants. It also includes chapters on endosymbioses, plastid and mitochondrial mutants, gene expression profiling and methods for organelle transformation. The book is designed for students and researchers in plant molecular biology, taxonomy, biotechnology and evolutionary biology.
Goringer’s brilliant new work dedicates a chapter to each of the main types of RNA editing – the very first volume to do so. All of the sections here have been written by experts in the various research areas and a specific focus is put on the correlation between RNA structure and function, as well as on the complex cellular machineries that catalyze the different editing reactions. This leads to a "state of the art" compendium of our current knowledge on RNA editing.
Presented here is an analysis of plant development and plant metabolism using the tools of genetics and molecular biology, such as mutant analysis, mutation tagging, mapping using polymorphic characters and basic molecular biology techniques. Studies with a range of model genetic organisms, most notably maize and Arabidopsis, are included. The reader gains a comprehensive view of the subject which is more and more of both scientific and industrial interest. The value of basic research in plants is highlighted and examples where basic studies have led to applications in agricultural biotechnology are given.
1 A Leaf Cell Consists of Several Metabolic Compartments 2 The Use of Energy from Sunlight by Photosynthesis is the Basis of Life on Earth 3 Photosynthesis is an Electron Transport Process 4 ATP is Generated by Photosynthesis 5 Mitochondria are the Power Station of the Cell 6 The Calvin Cycle Catalyzes Photosynthetic CO2 Assimilation 7 In the Photorespiratory Pathway Phosphoglycolate Formed by the Oxygenase Activity of RubisCo is Recycled 8 Photosynthesis Implies the Consumption of Water 9 Polysaccharides are Storage and Transport Forms of Carbohydrates Produced by Photosynthesis 10Nitrate Assimilation is Essential for the Synthesis of Organic Matter 11 Nitrogen Fixation Enables the Nitrogen...
This volume is based on the proceedings of an International Symposium on "Cytochrome Systems: Molecular Biology and Bioenergetics" that was held at Selva di Fasano near Bari, Italy, between April 7 and 11,1987. It contains papers covering the subjects discussed at the Symposium, contributed both by participants of the meeting and by some invited speakers who were not able to attend. The aim of the Symposium was to bring together experts in various rese arch strategies currently being applied to the study of cytochrome systems, including molecular genetics, protein chemistry, enzymology of electron transfer and protonmotive activity in energy-transducing biological mem branes. Because of the ...
We have taught plant molecular biology and biotechnology at the undergraduate and graduate level for over 20 years. In the past few decades, the field of plant organelle molecular biology and biotechnology has made immense strides. From the green revolution to golden rice, plant organelles have revolutionized agriculture. Given the exponential growth in research, the problem of finding appropriate textbooks for courses in plant biotechnology and molecular biology has become a major challenge. After years of handing out photocopies of various journal articles and reviews scattered through out the print and electronic media, a serendipitous meeting occurred at the 2002 IATPC World Congress hel...
Molecular biology is one of the most rapidly developing and at the same time most exciting disciplines. The key to molecular biology lies in the understanding of nucleic acids - their structure, function, and interaction with proteins. Nucleic Acids and Molecular Biology was created to keep scientists abreast of the explosively growing information and to comply with the great interest in this field.
This book is the first comprehensive account of what is known about the organism. The information is presented in the context of plant biology in general, with the properties of Arabidopsis mutants and the insights derived from their analysis as a unifying theme. The book's scope includes genetics, growth and development, biochemistry, physiology, and responses to pathogens and environmental stress. This unique volume, in the classic tradition of the Cold Spring Harbor Monograph Series, is a landmark in plant science, essential reading for investigators at graduate student level and beyond, and a work of reference that will serve the field for years to come.
This volume focuses on mitochondrial RNA metabolism, emphasizing recent discoveries and technological advances in this fast moving area that increase our understanding of mitochondrial gene function. Topics addressed include the interplay of mitochondria with the nucleus and cytosol, structure-function connections, and relevance to human disease. Mitochondria are the powerhouses of the cell, and a great deal is known about mitochondrial energy metabolism. Less well known is the plethora of amazing mechanisms that have evolved to control expression of mitochondrial genomes. Several RNA processes and machineries in protozoa, plants, flies and humans are discussed, including: transcription and ...