You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book presents a unified study of dynamically coupled systems involving a rigid body and an ideal fluid flow from the perspective of Lagrangian and Hamiltonian mechanics. It compiles theoretical investigations on the topic of dynamically coupled systems using a framework grounded in Kirchhoff’s equations. The text achieves a balance between geometric mechanics, or the modern theories of reduction of Lagrangian and Hamiltonian systems, and classical fluid mechanics, with a special focus on the applications of these principles. Following an introduction to Kirchhoff’s equations of motion, the book discusses several extensions of Kirchhoff’s work, particularly related to vortices. It addresses the equations of motions of these systems and their Lagrangian and Hamiltonian formulations. The book is suitable to mathematicians, physicists and engineers with a background in Lagrangian and Hamiltonian mechanics and theoretical fluid mechanics. It includes a brief introductory overview of geometric mechanics in the appendix.
None
Knowledge of added body masses that interact with fluid is necessary in various research and applied tasks of hydro- and aeromechanics: steady and unsteady motion of rigid bodies, total vibration of bodies in fluid, local vibration of the external plating of different structures. This reference book contains data on added masses of ships and various ship and marine engineering structures. Also theoretical and experimental methods for determining added masses of these objects are described. A major part of the material is presented in the format of final formulas and plots which are ready for practical use. The book summarises all key material that was published in both Russian and English-language literature. This volume is intended for technical specialists of shipbuilding and related industries. The author is one of the leading Russian experts in the area of ship hydrodynamics.
This text is an introduction to current research on the N- vortex problem of fluid mechanics. It describes the Hamiltonian aspects of vortex dynamics as an entry point into the rather large literature on the topic, with exercises at the end of each chapter.
Lists for 19 include the Mathematical Association of America, and 1955- also the Society for Industrial and Applied Mathematics.
This book is a comprehensive treatment of engineering undergraduate differential equations as well as linear vibrations and feedback control. While this material has traditionally been separated into different courses in undergraduate engineering curricula. This text provides a streamlined and efficient treatment of material normally covered in three courses. Ultimately, engineering students study mathematics in order to be able to solve problems within the engineering realm. Engineering Differential Equations: Theory and Applications guides students to approach the mathematical theory with much greater interest and enthusiasm by teaching the theory together with applications. Additionally, it includes an abundance of detailed examples. Appendices include numerous C and FORTRAN example programs. This book is intended for engineering undergraduate students, particularly aerospace and mechanical engineers and students in other disciplines concerned with mechanical systems analysis and control. Prerequisites include basic and advanced calculus with an introduction to linear algebra.
This book discusses the subject of wave/current flow around a cylinder, the forces induced on the cylinder by the flow, and the vibration pattern of slender structures in a marine environment.The primary aim of the book is to describe the flow pattern and the resulting load which develops when waves or current meet a cylinder. Attention is paid to the special case of a circular cylinder. The development in the forces is related to the various flow patterns and is discussed in detail. Regular as well as irregular waves are considered, and special cases like wall proximities (pipelines) are also investigated.The book is intended for MSc students with some experience in basic fluid mechanics and for PhD students.
Based on the 1991 LMS Invited Lectures given by Professor Marsden, this book discusses and applies symmetry methods to such areas as bifurcations and chaos in mechanical systems.