You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
The five-volume set LNCS 14355, 14356, 14357, 14358 and 14359 constitutes the refereed proceedings of the 12th International Conference on Image and Graphics, ICIG 2023, held in Nanjing, China, during September 22–24, 2023. The 166 papers presented in the proceedings set were carefully reviewed and selected from 409 submissions. They were organized in topical sections as follows: computer vision and pattern recognition; computer graphics and visualization; compression, transmission, retrieval; artificial intelligence; biological and medical image processing; color and multispectral processing; computational imaging; multi-view and stereoscopic processing; multimedia security; surveillance and remote sensing, and virtual reality. The ICIG 2023 is a biennial conference that focuses on innovative technologies of image, video and graphics processing and fostering innovation, entrepreneurship, and networking. It will feature world-class plenary speakers, exhibits, and high-quality peer reviewed oral and poster presentations.
This is the refereed proceedings of the 24th Computer Graphics International Conference, CGI 2006. The 38 revised full papers and 37 revised short papers presented were carefully reviewed. The papers are organized in topical sections on rendering and texture, efficient modeling and deformation, digital geometry processing, shape matching and shape analysis, face, virtual reality, motion and image, as well as CAGD.
This unique book explores several well-known machine learning and data analysis algorithms from a mathematical and programming perspective. The authors present machine learning methods, review the underlying mathematics, and provide programming exercises to deepen the reader’s understanding; accompany application areas with exercises that explore the unique characteristics of real-world data sets (e.g., image data for pedestrian detection, biological cell data); and provide new terminology and background information on mathematical concepts, as well as exercises, in “info-boxes” throughout the text. Algorithmic Mathematics in Machine Learning is intended for mathematicians, computer scientists, and practitioners who have a basic mathematical background in analysis and linear algebra but little or no knowledge of machine learning and related algorithms. Researchers in the natural sciences and engineers interested in acquiring the mathematics needed to apply the most popular machine learning algorithms will also find this book useful. This book is appropriate for a practical lab or basic lecture course on machine learning within a mathematics curriculum.
Nowadays, fashion has become an essential aspect of people's daily life. As each outfit usually comprises several complementary items, such as a top, bottom, shoes, and accessories, a proper outfit largely relies on the harmonious matching of these items. Nevertheless, not everyone is good at outfit composition, especially those who have a poor fashion aesthetic. Fortunately, in recent years the number of online fashion-oriented communities, like IQON and Chictopia, as well as e-commerce sites, like Amazon and eBay, has grown. The tremendous amount of real-world data regarding people's various fashion behaviors has opened a door to automatic clothing matching. Despite its significant value, ...
This textbook provides a solid mathematical basis for understanding popular data science algorithms for clustering and classification and shows that an in-depth understanding of the mathematics powering these algorithms gives insight into the underlying data. It presents a step-by-step derivation of these algorithms, outlining their implementation from scratch in a computationally sound way. Mathematics of Data Science: A Computational Approach to Clustering and Classification proposes different ways of visualizing high-dimensional data to unveil hidden internal structures, and nearly every chapter includes graphical explanations and computed examples using publicly available data sets to highlight similarities and differences among the algorithms. This self-contained book is geared toward advanced undergraduate and beginning graduate students in the mathematical sciences, engineering, and computer science and can be used as the main text in a semester course. Researchers in any application area where data science methods are used will also find the book of interest. No advanced mathematical or statistical background is assumed.
Nonnegative matrix factorization (NMF) in its modern form has become a standard tool in the analysis of high-dimensional data sets. This book provides a comprehensive and up-to-date account of the most important aspects of the NMF problem and is the first to detail its theoretical aspects, including geometric interpretation, nonnegative rank, complexity, and uniqueness. It explains why understanding these theoretical insights is key to using this computational tool effectively and meaningfully. Nonnegative Matrix Factorization is accessible to a wide audience and is ideal for anyone interested in the workings of NMF. It discusses some new results on the nonnegative rank and the identifiability of NMF and makes available MATLAB codes for readers to run the numerical examples presented in the book. Graduate students starting to work on NMF and researchers interested in better understanding the NMF problem and how they can use it will find this book useful. It can be used in advanced undergraduate and graduate-level courses on numerical linear algebra and on advanced topics in numerical linear algebra and requires only a basic knowledge of linear algebra and optimization.
Research on the problem of clustering tends to be fragmented across the pattern recognition, database, data mining, and machine learning communities. Addressing this problem in a unified way, Data Clustering: Algorithms and Applications provides complete coverage of the entire area of clustering, from basic methods to more refined and complex data clustering approaches. It pays special attention to recent issues in graphs, social networks, and other domains. The book focuses on three primary aspects of data clustering: Methods, describing key techniques commonly used for clustering, such as feature selection, agglomerative clustering, partitional clustering, density-based clustering, probabi...
With the rapid development of machinery, materials science and energy engineering technology in China, new theories and application results constantly appear. Higher and newer requirements in these fields are sought by business enterprises and members of the engineering profession.This conference was held to further promote the exchange and cooperation among local researchers, to upgrade the academic standards and international influence on the study of these fields in China, and to play a positive role in bridging the gap with the international research community.This volume consists of 106 peer-reviewed articles by local and foreign eminent scholars which cover the frontiers and hot topics in machinery and process equipment, materials science, energy engineering and mechatronics.