You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
"Fundamental Astronomy and Solar System Dynamics", a program of invited papers honoring Professor Walter Fricke, who for thirty years has been Director of the Astronomisches Rechen lnstitut in Heidelberg, was held at the Thompson Conference Center of the University of Texas at Austin on Wednesday 27 March 1985 on the occasion of his seventieth birthday and retirement as Director of ARl. Professor Fricke's contributions to astronomy encompass the areas of galactic dynamics, radial velocities, stellar statistics. the fundamental reference system and the constant of precession. Participants were welcomed to the Uni versi ty of Texas by Professor J. Parker Lamb, Chairman of the Department of Aer...
Published by the American Geophysical Union as part of the Geodynamics Series, Volume 24. There are times in the history of a science when the evolving technology has been combined with a singleness of purpose to make possible the next great step. For space geodesy the decade of the 1980s was one of those times. Initiated in the early 1980s, the NASA Crustal Dynamics Project (CDP), a global venture of unprecedented proportions, exploited new technologies to confirm and refine tectonic theories and to advance geodynamics. The highlights of the efforts of scientists and engineers from some 30 countries are contained in the 54 papers collected in three volumes which are dedicated to the memory of Edward A. (Ted) Flinn, the former Chief Scientist of the NASA Geodynamics Program.
The new level of precision and global coverage provided by satellite altimetry is rapidly advancing studies of ocean circulation. It allows for new insights into marine geodesy, ice sheet movements, plate tectonics, and for the first time provides high-resolution bathymetry for previously unmapped regions of our watery planet and crucial information on the large-scale ocean features on intra-season to interannual time scales. Satellite Altimetry and Earth Sciences has integrated the expertise of the leading international researchers to demonstrate the techniques, missions, and accuracy of satellite altimetry, including altimeter measurements, orbit determination, and ocean circulation models...
Modern Earth System Monitoring represents a fundamental change in the way scientists study the Earth System. In Oceanography, for the past two centuries, ships have provided the platforms for observing. Expeditions on the continents and Earth’s poles are land-based analogues. Fundamental understanding of current systems, climate, natural hazards, and ecosystems has been greatly advanced. While these approaches have been remarkably successful, the need to establish measurements over time can only be made using Earth observations and observatories with exacting standards and continuous data. The 19 peer-reviewed contributions in this volume provide early insights into this emerging view of Earth in both space and time in which change is a critical component of our growing understanding.
This book gives a detailed, up-to-date account of theLenseOCoThirring effect and its implications for physics andastrophysics. Starting from a profound intuition of Lense and Thirringin 1918, based on a simple solution to the linearized Einstein fieldequations, this has emerged in the past four decades as a phenomenonof extraordinary importance in cosmology, radio jets in quasars, andthe physics of neutron stars and black holes, besides leading to someof the most sophisticated experiments ever performed in the spacesurrounding our planet."
The subjects of resonance and stability are closely related to the problem of evolution of the solar system. It is a physically involving problem and the methods available to mathematics today seem unsatisfactory to produce pure non linear ways of attack. The linearization process in both subjects is clearly of doubtful significance, so that, even if very restrictive, numerical solutions are still the best and more valuable sources of informations. It is quite possible that we know now very little more of the entire problem that was known to Poincare, with the advantage that we can now compute much faster and with much more precision. We feel that the papers collected in this Symposium have ...
This volume includes original papers presented at the 4th Symposium on Satellite Dynamics held at the XII Annual Plenary Meeting of COSPAR. At a time where it might be thought that very few problems were left un solved in celestial mechanics, we discover that new and more challenging questions must be answered. The pre cision of observations reaches the centimeter level and physical phenomena which had been disregarded come into play. We need a better treatment of atmospheric drag, radiation forces, and a better knowledge of the earth's gravitational field. Time has to be precisely defined as well as reference systems, including improved values for precision and nutation. The question of res...
Geodesy is the science of accurately measuring and understanding three fundamental properties of Earth: its geometric shape, its orientation in space, and its gravity field, as well as the changes of these properties with time. Over the past half century, the United States, in cooperation with international partners, has led the development of geodetic techniques and instrumentation. Geodetic observing systems provide a significant benefit to society in a wide array of military, research, civil, and commercial areas, including sea level change monitoring, autonomous navigation, tighter low flying routes for strategic aircraft, precision agriculture, civil surveying, earthquake monitoring, fo...