You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a general introduction to the topic of turbulent flows. Apart from classical topics in turbulence, attention is also paid to modern topics. After studying this work, the reader will have the basic knowledge to follow current topics on turbulence in scientific literature. The theory is illustrated with a number of examples of applications, such as closure models, numerical simulations and turbulent diffusion, and experimental findings. The work also contains a number of illustrative exercises Review from the Textbook & Academic Authors Association that awarded the book with the 2017 Most Promising New Textbook Award: “Compared to other books in this subject, we find this one to be very up-to-date and effective at explaining this complicated subject. We certainly would highly recommend it as a text for students and practicing professionals who wish to expand their understanding of modern fluid mechanics.”
This book contains the papers presented at the Parallel Computational Fluid Dynamics 1998 Conference. The book is focused on new developments and applications of parallel technology. Key topics are introduced through contributed papers and invited lectures. These include typical algorithmic developments, such as: distributed computing, domain decomposition and parallel algorithm. Some of the papers address the evaluations of software and machine performance and software tool environments. The application of parallel computers to complex fluid dynamics problems are also conveyed through sessions such as DNS/LES, combustion and reacting flows, industrial applications, water resources and environmental flows.The editors believe this book will provide many researchers, much beyond those contributing to this volume, with fresh information and reference.
INTRODUCTION TO FLUID DYNAMICS A concise resource that presents a physics-based introduction to fluid dynamics and helps students bridge the gap between mathematical theory and real-world physical properties Introduction to Fluid Dynamics offers a unique physics-based approach to fluid dynamics. Instead of emphasizing specific problem-solving methodologies, this book explains and interprets the physics behind the theory, which helps mathematically-inclined students develop physical intuition while giving more physically-inclined students a better grasp of the underlying mathematics. Real-world examples and end-of-chapter practice problems are included to further enhance student understanding...
Die vorliegende Arbeit untersucht die Erzeugung eines Flammenkerns im polydispersen Spray eines komplexen Brennstoffes unter dem Einfluss turbulenter Strömung und unter subatmosphärischen Bedingungen, um einen Beitrag zum besseren Verständnis der Wiederzündung eines Triebwerkes in großer Höhe zu leisten. Es wurde ein Modell entwickelt, welches die Zündenergie für die Generierung eines Flammenkerns im polydispersen Spray eines komplexen Brennstoffs unter turbulenten Bedingungen vorhersagen kann. - The present study investigates the generation of a flame kernel in the polydisperse spray of a complex fuel under the influence of turbulent flow and under subatmospheric conditions in order to contribute to a better understanding of the altitude relight of a jet engine. A model was developed that can predict the ignition energy for generating a flame kernel in the polydisperse spray of a complex fuel under turbulent conditions.
The fifth ERCOFfAC workshop 'Direct and Large-Eddy Simulation-5' (DLES-5) was held at the Munich University of Technology, August 27-29, 2003. It is part of a series of workshops that originated at the University of Surrey in 1994 with the intention to provide a forum for presentation and dis cussion of recent developments in the field of direct and large-eddy simula tion. Over the years the DLES-series has grown into a major international venue focussed on all aspects of DNS and LES, but also on hybrid methods like RANSILES coupling and detached-eddy simulation designed to provide reliable answers to technical flow problems at reasonable computational cost. DLES-5 was attended by 111 delega...
Free-Surface Flow: Computational Methods presents a detailed analysis of numerical schemes for shallow-water waves. It includes practical applications for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow. Closure models for turbulence, such as Reynolds-Averaged Navier-Stokes and Large Eddy Simulation are presented, coupling the aforementioned surface tracking techniques with environmental fluid dynamics. While many computer programs can solve the partial differential equations describing the dynamics of fluids, many are not capable of including free surfaces in their simulations. - Provides numerical solutions of the turbulent Navier-Stokes equations in three space dimensions - Includes closure models for turbulence, such as Reynolds-Averaged Navier-Stokes, and Large Eddy Simulation - Practical applications are presented for the numerical simulation of flow and transport in rivers and estuaries, the dam-break problem and overland flow
This volume continues previous DLES proceedings books, presenting modern developments in turbulent flow research. It is comprehensive in its coverage of numerical and modeling techniques for fluid mechanics. After Surrey in 1994, Grenoble in 1996, Cambridge in 1999, Enschede in 2001, Munich in 2003, Poitiers in 2005, and Trieste in 2009, the 8th workshop, DLES8, was held in Eindhoven, The Netherlands, again under the auspices of ERCOFTAC. Following the spirit of the series, the goal of this workshop is to establish a state-of-the-art of DNS and LES techniques for the computation and modeling of transitional/turbulent flows covering a broad scope of topics such as aerodynamics, acoustics, combustion, multiphase flows, environment, geophysics and bio-medical applications. This gathering of specialists in the field was a unique opportunity for discussions about the more recent advances in the prediction, understanding and control of turbulent flows in academic or industrial situations.
This book reports on the 12th International Workshop on Railway Noise held on 12-16 September 2016 at Terrigal, Australia. It gathers peer-reviewed papers describing the latest developments in rail noise and vibration, as well as state-of-the-art reviews by distinguished experts in the field. The papers cover a broad range of rail noise topics including wheel squeal, policy, regulation and perception, wheel and rail noise, predictions, measurements and monitoring, interior noise, rail roughness, corrugation and grinding, high speed rail and aerodynamic noise, and structure-borne noise, ground-borne vibration and resilient track forms. It offers an essential reference-guide to both scientists and engineers in their daily efforts to identify, understand and solve a number of problems related to railway noise and vibration, and to achieve their ultimate goal of reducing the environmental impact of railway systems.