You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book provides a review of image analysis techniques as they are applied in the field of diagnostic and therapeutic nuclear medicine. Driven in part by the remarkable sophistication of nuclear medicine instrumentation and - crease in computing power and its ready and inexpensive availability, this is a relatively new yet rapidly expanding field. Likewise, although the use of nuclear imaging for diagnosis and therapy has origins dating back almost to the pioneering work of Dr G. de Hevesy, quantitative imaging has only recently emerged as a promising approach for diagnosis and therapy of many diseases. An effort has, therefore, been made to place the reviews provided in this book in a bro...
Since the early 1960's, the field of medical imaging has experienced explosive growth due to the development of three new imaging modalities-radionuclide imaging, ultrasound, and magnetic resonance imaging. Along with X-ray, they are among the most important clinical diagnostic tools in medicine today. Additionally, the digital revolution has played a major role in this growth, with advances in computer and digital technology and in electronics making fast data acquisition and mass data storage possible. This text provides an introduction to the physics and instrumentation of the four most often used medical imaging techniques. Each chapter includes a discussion of recent technological developments and the biological effects of the imaging modality. End-of-chapter problem sets, lists of relevant references, and suggested further reading are presented for each technique. - X-ray imaging, including CT and digital radiography - Radionuclide imaging, including SPECT and PET - Ultrasound imaging - Magnetic resonance imaging
This work is devoted to understanding the recent advances in nuclear medicine and molecular imaging technologies along with their application to integrated medical therapy and future drug development. This anthology is based on the international symposium in 2015 entitled “Perspective on Nuclear Medicine for Molecular Diagnosis and Integrated Therapy. “The symposium provided an opportunity to exchange ideas on how to promote nuclear medicine technology and how to extend the technology to medical therapy and drug development, and was also a good opportunity to discuss the future perspective of nuclear medicine and molecular imaging by worldwide leaders in the field. Molecular imaging t...
The discovery of x-ray, as a landmark event, enabled us to see the "invisible," opening a new era in medical diagnostics. More importantly, it offered a unique undestanding around the interaction of electromagnetic signal with human tissue and the utility of its selective absorption, scattering, diffusion, and reflection as a tool for understanding
Category Biomedical Engineering Subcategory Contact Editor: Stern
Small-Animal SPECT Imaging is an edited work derived from the first workshop on Small-Animal SPECT Imaging held January 14-16, 2004 at the University of Arizona, Tucson, AZ, USA. The overall goal of the meeting and therefore this volume is to promote information exchange and collaboration between the research groups developing systems for small-animal applications. Topics include the biomedical significance of small-animal imaging, an overview of detector technologies including scintillation cameras and semi-conductor arrays, imager design and data acquisition systems, animal handling and anesthesia issues, objective assessment of image quality, and system modeling and reconstruction algorithms.
Comprised of chapters carefully selected from CRC‘s best-selling engineering handbooks, volumes in the Principles and Applications in Engineering series provide convenient, economical references sharply focused on particular engineering topics and subspecialties. Culled from the Biomedical Engineering Handbook, Biomedical Imaging
Over the past few decades, the radiological science community has developed and applied numerous models of the human body for radiation protection, diagnostic imaging, and nuclear medicine therapy. The Handbook of Anatomical Models for Radiation Dosimetry provides a comprehensive review of the development and application of these computational mode
This book is a tribute to Professor Yuan-Cheng Fung, the Father of Biomechanics and a pioneer in Bioengineering, in honor of his 90th Birthday. The book consists of articles contributed by his colleagues, students, friends and family. These articles illustrate Professor Fung's profound influence on outstanding leaders in bioengineering, especially biomechanics, and on the life and work of all people who have been in contact with him. The scientific topics covered range from fundamentals of science and engineering (e.g., residual stress, flow dynamics, and cellular signaling) to clinical disorders (e.g., atherosclerosis, diabetes, and hypertension). The articles cover the whole spectrum of biological hierarchy, from genes/molecules to cells/tissues, and organs/systems, with close correlations between engineering and biomedical sciences. This book provides an excellent view of the marvelous contributions of Professor Fung as a Renaissance Man.
As the third volume of The Biomedical Engineering Handbook, Fourth Edition, this book covers broad areas such as biosignal processing, medical imaging, infrared imaging, and medical informatics. More than three dozen specific topics are examined including biomedical signal acquisition, thermographs, infrared cameras, mammography, computed tomography, positron-emission tomography, magnetic resonance imaging, hospital information systems, and computer-based patient records. The material is presented in a systematic manner and has been updated to reflect the latest applications and research findings.