You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Now available in a one-volume paperback, this book traces the development of the most important mathematical concepts, giving special attention to the lives and thoughts of such mathematical innovators as Pythagoras, Newton, Poincare, and Godel. Beginning with a Sumerian short story--ultimately linked to modern digital computers--the author clearly introduces concepts of binary operations; point-set topology; the nature of post-relativity geometries; optimization and decision processes; ergodic theorems; epsilon-delta arithmetization; integral equations; the beautiful "ideals" of Dedekind and Emmy Noether; and the importance of "purifying" mathematics. Organizing her material in a conceptual rather than a chronological manner, she integrates the traditional with the modern, enlivening her discussions with historical and biographical detail.
This volume presents the lectures given during the second French-Uzbek Colloquium on Algebra and Operator Theory which took place in Tashkent in 1997, at the Mathematical Institute of the Uzbekistan Academy of Sciences. Among the algebraic topics discussed here are deformation of Lie algebras, cohomology theory, the algebraic variety of the laws of Lie algebras, Euler equations on Lie algebras, Leibniz algebras, and real K-theory. Some contributions have a geometrical aspect, such as supermanifolds. The papers on operator theory deal with the study of certain types of operator algebras. This volume also contains a detailed introduction to the theory of quantum groups. Audience: This book is intended for graduate students specialising in algebra, differential geometry, operator theory, and theoretical physics, and for researchers in mathematics and theoretical physics.
The book presents the history of ICMI trough a prosopographical approach. In other words, it pays a lot of attention to the actors of the International movement. The portraits of the members of the ICMI Central Committees (1908-1936) and ICMI Executive Committees (1952-2008), and other eminent figures in ICMI history, who have passed away in the first 100 years of its life, are the guiding thread of the volume. Each portrait includes: · Biographical information · An outline of the various contributions made by the individual in question to the study of problems pertaining to mathematics teaching/education · Primary bibliography · Secondary with particular attention to the publications co...
Volume 2 of 2.
Sophie Germain taught herself mathematics by candlelight, huddled in her bedclothes. Ada Byron Lovelace anticipated aspects of general-purpose digital computing by more than a century. Cora Ratto de Sadosky advanced messages of tolerance and equality while sharing her mathematical talents with generations of students. This captivating book gives voice to women mathematicians from the late eighteenth century through to the present day. It documents the complex nature of the conditions women around the world have faced--and continue to face--while pursuing their careers in mathematics. The stories of the three women above and those of many more appear here, each one enlightening and inspiring....
This volume consists of contributions by researchers who were invited to the Harlaxton Conference on Computational Group Theory and Cohomology, held in August of 2008, and to the AMS Special Session on Computational Group Theory, held in October 2008. This volume showcases examples of how Computational Group Theory can be applied to a wide range of theoretical aspects of group theory. Among the problems studied in this book are classification of p-groups, covers of Lie groups, resolutions of Bieberbach groups, and the study of the lower central series of free groups. This volume also includes expository articles on the probabilistic zeta function of a group and on enumerating subgroups of symmetric groups. Researchers and graduate students working in all areas of Group Theory will find many examples of how Computational Group Theory helps at various stages of the research process, from developing conjectures through the verification stage. These examples will suggest to the mathematician ways to incorporate Computational Group Theory into their own research endeavors.
This textbook develops the abstract algebra necessary to prove the impossibility of four famous mathematical feats: squaring the circle, trisecting the angle, doubling the cube, and solving quintic equations. All the relevant concepts about fields are introduced concretely, with the geometrical questions providing motivation for the algebraic concepts. By focusing on problems that are as easy to approach as they were fiendishly difficult to resolve, the authors provide a uniquely accessible introduction to the power of abstraction. Beginning with a brief account of the history of these fabled problems, the book goes on to present the theory of fields, polynomials, field extensions, and irred...
Part 1 of the Trilogy "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" & "About the Strong Sylow Theorem for the Prime p in Simple Locally Finite Groups" & "The Strong Sylow Theorem for the Prime p in Projective Special Linear Locally Finite Groups" is based on the beauteous BoD-Book "Characterising locally finite groups satisfying the strong Sylow Theorem for the prime p - Revised edition" (see ISBN 978-3-7562-3416-5) which in turn has been based on the author's research paper "Characterising Locally Finite Groups Satisfying the Strong Sylow Theorem for the Prime p" that was published on pp. 13-39 of Volume 13 of the open access mathematical journal...
The famous problems of squaring the circle, doubling the cube and trisecting an angle captured the imagination of both professional and amateur mathematicians for over two thousand years. Despite the enormous effort and ingenious attempts by these men and women, the problems would not yield to purely geometrical methods. It was only the development. of abstract algebra in the nineteenth century which enabled mathematicians to arrive at the surprising conclusion that these constructions are not possible. In this book we develop enough abstract algebra to prove that these constructions are impossible. Our approach introduces all the relevant concepts about fields in a way which is more concret...
Volume 2 of 2.