You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces researchers and advanced students with a basic control systems background to an array of control techniques which they can easily implement and use to meet the required performance specifications for their mechatronic applications. It is the result of close to two decades of work of the authors on modeling, simulating and controlling different mechatronic systems from the motion control, automotive control and micro and nano-mechanical systems control areas. The methods presented in the book have all been tested by the authors and a very large group of researchers, who have produced practically implementable controllers with highly successful results.
Discover the latest research in path planning and robust path tracking control In Autonomous Road Vehicle Path Planning and Tracking Control, a team of distinguished researchers delivers a practical and insightful exploration of how to design robust path tracking control. The authors include easy to understand concepts that are immediately applicable to the work of practicing control engineers and graduate students working in autonomous driving applications. Controller parameters are presented graphically, and regions of guaranteed performance are simple to visualize and understand. The book discusses the limits of performance, as well as hardware-in-the-loop simulation and experimental resu...
The book reveals many different aspects of motion control and a wide multiplicity of approaches to the problem as well. Despite the number of examples, however, this volume is not meant to be exhaustive: it intends to offer some original insights for all researchers who will hopefully make their experience available for a forthcoming publication on the subject.
Dynamic System Modeling & Analysis with MATLAB & Python A robust introduction to the advanced programming techniques and skills needed for control engineering In Dynamic System Modeling & Analysis with MATLAB & Python: For Control Engineers, accomplished control engineer Dr. Jongrae Kim delivers an insightful and concise introduction to the advanced programming skills required by control engineers. The book discusses dynamic systems used by satellites, aircraft, autonomous robots, and biomolecular networks. Throughout the text, MATLAB and Python are used to consider various dynamic modeling theories and examples. The author covers a range of control topics, including attitude dynamics, attit...
This book captures multidisciplinary research encompassing various facets of autonomous vehicle systems (AVS) research and developments. The AVS field is rapidly moving towards realization with numerous advances continually reported. The contributions to this field come from widely varying branches of knowledge, making it a truly multidisciplinary area of research and development. The topics covered in the book include: AI and deep learning for AVS Autonomous steering through deep neural networks Adversarial attacks and defenses on autonomous vehicles Gesture recognition for vehicle control Multi-sensor fusion in autonomous vehicles Teleoperation technologies for AVS Simulation and game theoretic decision making for AVS Path following control system design for AVS Hybrid cloud and edge solutions for AVS Ethics of AVS
This book focuses on the control-by-wire system, particularly the steer-by-wire system, as well as its control and optimization issues in chassis integration. The steering stability of the vehicle, handling portability, and overall performance of the chassis system are improved by steer-by-wire technology, which includes stability control, road-feeling control, decoupling control, force and displacement coordinated control, and chassis integration optimization. Furthermore, intelligent control goals such as active collision avoidance and active rollover prevention of the vehicle are realized, and the active safety of the vehicle is increased, due to the integrated control of the steer-by-wire system and chassis system. In this book, different types of steer-by-wire systems are introduced, as well as thorough force and displacement control strategies and their implementation in chassis integrated control, ensuring the intelligent and unmanned driving's control reaction speed and precision.
Tremendous industrial and academic progress and investments have been made in au-tonomous driving, but still many aspects are unknown and require further investigation,development and testing. A key part of an autonomous driving system is an efficient plan-ning algorithm with potential to reduce accidents, or even unpleasant and stressful drivingexperience. A higher degree of automated planning also makes it possible to have a betterenergy management strategy with improved performance through analysis of surroundingenvironment of autonomous vehicles and taking action in a timely manner. This thesis deals with planning of autonomous vehicles in different urban scenarios, road,and vehicle cond...
The term Mechatronics is a combination of the words “mechanics” and “electronics”. It is the blending of mechanical, electronic, and computer engineering into an integrated design and implementation. Mechatronics systems employ microprocessors and software as well as special-purpose electronics. The main objective of this interdisciplinary engineering field is the study of automated devices (e.g. robots) from an engineering perspective, thinking about the design of products and manufacturing processes. Today, mechatronics is having a significant and increasing impact on engineering - in the design, development, and operation of engineering systems. Mechatronics systems and products a...
Differential Game Theory with Applications to Missiles and Autonomous Systems explains the use of differential game theory in autonomous guidance and control systems. The book begins with an introduction to the basic principles before considering optimum control and game theory. Two-party and multi-party game theory and guidance are then covered and, finally, the theory is demonstrated through simulation examples and models and the simulation results are discussed. Recent developments in the area of guidance and autonomous systems are also presented. Key features: Presents new developments and how they relate to established control systems knowledge. Demonstrates the theory through simulation examples and models. Covers two-party and multi-party game theory and guidance. Accompanied by a website hosting MATLAB® code. The book is essential reading for researchers and practitioners in the aerospace and defence industries as well as graduate students in aerospace engineering.