You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
From the infinitesimal scale of particle physics to the cosmic scale of the universe, research is concerned with the nature of mass. While there have been spectacular advances in physics during the past century, mass still remains a mysterious entity at the forefront of current research. Our current perspective on gravitation has arisen over millennia, through the contemplation of falling apples, lift thought experiments and notions of stars spiraling into black holes. In this volume, the world’s leading scientists offer a multifaceted approach to mass by giving a concise and introductory presentation based on insights from their respective fields of research on gravity. The main theme is ...
The articles included in this Volume represent a broad and highly qualified view on the present state of general relativity, quantum gravity, and their cosmological and astrophysical implications. As such, it may serve as a valuable source of knowledge and inspiration for experts in these fields, as well as an advanced source of information for young researchers. The occasion to gather together so many leading experts in the field was to celebrate the centenary of Einstein's stay in Prague in 1911-1912. It was in fact during his stay in Prague that Einstein started in earnest to develop his ideas about general relativity that fully developed in his paper in 1915. Approaching soon the centenary of his famous paper, this volume offers a precious overview of the path done by the scientific community in this intriguing and vibrant field in the last century, defining the challenges of the next 100 years. The content is divided into four broad parts: (i) Gravity and Prague, (ii) Classical General Relativity, (iii) Cosmology and Quantum Gravity, and (iv) Numerical Relativity and Relativistic Astrophysics.
It is with great joy that we present a collection of essays written in honour of Jayant Vishnu Narlikar, who completed 60 years of age on July 19, 1998, by his friends and colleagues, including several of his for mer students. Jayant has had a long research career in astrophysics and cosmology, which he began at Cambridge in 1960, as a student of Sir Fred Hoyle. He started his work with a big bang, expounding on the steady state theory of the Universe and creating a new theory of gravity inspired by Mach's principle. He also worked on action-at-a-distance electrodynamics, inspired by the explorations of Wheeler, Feynman and Hogarth in that direction. This body of work established Jayant's re...
This book serves two purposes. The authors present important aspects of modern research on the mathematical structure of Einstein's field equations and they show how to extract their physical content from them by mathematically exact methods. The essays are devoted to exact solutions and to the Cauchy problem of the field equations as well as to post-Newtonian approximations that have direct physical implications. Further topics concern quantum gravity and optics in gravitational fields. The book addresses researchers in relativity and differential geometry but can also be used as additional reading material for graduate students.
This thesis covers a diverse set of topics related to space-based gravitational wave detectors such as the Laser Interferometer Space Antenna (LISA). The core of the thesis is devoted to the preprocessing of the interferometric link data for a LISA constellation, specifically developing optimal Kalman filters to reduce arm length noise due to clock noise. The approach is to apply Kalman filters of increasing complexity to make optimal estimates of relevant quantities such as constellation arm length, relative clock drift, and Doppler frequencies based on the available measurement data. Depending on the complexity of the filter and the simulated data, these Kalman filter estimates can provide...
This book describes a paradigm change in modern physics from the philosophy and mathematical expression of the quantum theory to those of general relativity. The approach applies to all domains - from elementary particles to cosmology. The change is from the positivistic views in which atomism, nondeterminism and measurement are fundamental, to a holistic view in realism, wherein matter - electrons, galaxies, - are correlated modes of a single continuum, the universe. A field that unifies electromagnetism, gravity and inertia is demonstrated explicitly, with new predictions, in terms of quaternion and spinor field equations in a curved spacetime. Quantum mechanics emerges as a linear, flatspace approximation for the equations of inertia in general relativity.
This book is a collection of lectures given in August 2006 at the Les Houches Summer School on "Particle Physics and Cosmology: the Fabric of Spacetime. It provides a pedagogical introduction to the various aspects of both particle physics beyond the Standard Model and Cosmology of the Early Universe, covering each topic from the basics to the most recent developments.· Provides a pedagogical introduction to topics at the interface of particle physics and cosmology· Addresses each topic from the basis to the most recent developments· Provides necessary tools to build new theoretical models addressing various issues both in cosmology and particle physics· Covers the lectures by internationally-renowned and leading experts· Faces the predictions of theoretical models against collider experimental data as well as from cosmological observations
Marcel Grossmann Meetings are formed to further the development of General Relativity by promoting theoretical understanding in the fields of physics, mathematics, astronomy and astrophysics and to direct future technological, observational, and experimental efforts. In these meetings are discussed recent developments in classical and quantum gravity, general relativity and relativistic astrophysics, with major emphasis on mathematical foundations and physical predictions, with the main objective of gathering scientists from diverse backgrounds for deepening the understanding of spacetime structure and reviewing the status of test-experiments for Einstein's theory of gravitation. The range o...
This volume offers a comprehensive overview of our understanding of gravity at both the experimental and the theoretical level. Critical reviews by experts cover topics ranging from astrophysics (anisotropies in the cosmic microwave background, gamma ray bursts, neutron stars and astroparticles), cosmology, the status of gravitational wave sources and detectors, verification of Newton's law at short distances, the equivalence principle, gravito-magnetism, measurement theory, time machines and the foundations of Einstein's theory, to string theory and loop quantum gravity.
Introducing gravitational-wave data analysis, this book is an ideal starting point for researchers entering the field, and researchers currently analyzing data. Detailed derivations of the basic formulae enable readers to apply general statistical concepts to the analysis of gravitational-wave signals. It also discusses new ideas on devising the efficient algorithms.