You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Silicon Based Polymers presents highlights in advanced research and technological innovations using macromolecular organosilicon compounds and systems, as presented in the 2007 ISPO congress. Silicon-containing materials and polymers are used all over the world and in a variety of industries, domestic products and high technology applications. Among them, silicones are certainly the most well–known, however there are still new properties discovered and preparative processes developed all the time, therefore adding to their potential. Less known, but in preparation for the future, are other silicon containing-polymers which are now close to maturity and in fact some are already available li...
Complementing the six volumes already published in Patai'sChemistry of the Functional Groups series this title covers topicsnot previously updated in the set. Written by key researchers in the field it includes more practicalchapters and industrial examples than before as well as additionalmaterial. There is a strong emphasis on "Poly" derivatives of variousclasses of silicon compounds as well as a chapter on silicon inmodern high-technology. These supplement the "practical" parts ofearlier volumes and enhance past material. * Continues with the high standard expected of the series * Complement to the 3 volume set of the chemistry of organicsilicon compounds published in 1998 * Updates conte...
Nanomaterials from Renewable Resources for Emerging Applications details developments in nanomaterials produced from renewable materials and their usage in food and packaging, energy conservation, and environmental applications. • Introduces fundamentals of nanomaterials from renewable resources, including processing and characterization. • Covers nanomaterials for applications in food and packaging, including nanocellulose, lignin- and chitosan-based nanomaterials, and nanostarch. • Discusses applications in energy conservation, such as supercapacitors, electrolyte membranes, energy storage devices, and insulation. • Describes environmental uses such as water remediation and purification and oil spill clean-ups. • Highlights advantages and challenges in commercialization of green nanoparticle-based materials. Equally beneficial to researchers and professionals, this book is aimed at readers across materials science and engineering, chemical engineering, chemistry, and related fields interested in sustainable engineering.
This book discusses the current direction of the research approach to extreme biomimetics through biological materials-inspired chemistry and its applications in modern technology and medicine. It is a resource covering topics of extreme (psychrophilic and thermopilic) biomineralization, solvothermal and hydrothermal chemistry of metal oxides and nanostructured composites, and bioinspired materials science in a diverse areas. The authors review the current advances in the extreme biomimetics research field and describe various approaches introduced and explored by their respective laboratories. • Details the basic principles of extreme biomimetics approach for design of new materials and applications; • Includes numerous examples of the hierarchical organization of hydrothermally or psychrophilically obtained biocomposites, structural bioscaffolds, biosculpturing, biomimetism, and bioinspiration as tools for the design of innovative materials; • Describes and details the principles of extreme biomimetics with respect to metallization of chemically and thermally stable biopolymers.
This volume presents an up-to-date review of modern materials and concepts, issues, and recent advances in analytical and physical chemistry. Distinguished scientists and engineers from key institutions worldwide have contributed chapters that provide a deep analysis of their particular subjects. The chapters discuss the composition and properties of complex materials as well as mixtures, processes, and the need for new and improved analytical technology.
Functional Hybrid Materials consist of both organic and inorganic components, assembled for the purpose of generating desirable properties and functionalities. The aim is twofold: to bring out or enhance advantageous chemical, electrochemical, magnetic or electronic characteristics and at the same time to reduce or wholly suppress undesirable properties or effects. Another target is the creation of entirely new material behavior. The vast number of hybrid material components available has opened up a wide and diversified field of fascinating research. In this book, a team of highly renowned experts gives an in-depth overview, illustrating the superiority of well-designed hybrid materials and their potential applications.
None
Bacterial cellulose (BC) is a natural polymer produced by different microbial cells. Its unique structural, physico-chemical, mechanical, thermal, and biological properties offer much potential for use in diverse applications in the biomedical, electronics, energy, and environmental fields, among others. This text provides an overview of the synthesis, characterization, modification, and application of BC. • Discusses sources, characterization, and biosynthesis of BC • Covers composites and aerogels based on BCs • Describes development of BCs from waste and challenges in large-scale production of BCs • Explores a variety of applications such as environmental, industrial, and biomedical This book will be of great interest to researchers and industry professionals in materials science, chemical engineering, chemistry, and other related fields seeking to learn about the synthesis and application of this important material.