You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Sandifer has been studying Euler for decades and is one of the world’s leading experts on his work. This volume is the second collection of Sandifer’s “How Euler Did It” columns. Each is a jewel of historical and mathematical exposition. The sum total of years of work and study of the most prolific mathematician of history, this volume will leave you marveling at Euler’s clever inventiveness and Sandifer’s wonderful ability to explicate and put it all in context.
The Early Mathematics of Leonhard Euler gives an article-by-article description of Leonhard Euler's early mathematical works; the 50 or so mathematical articles he wrote before he left St. Petersburg in 1741 to join the Academy of Frederick the Great in Berlin. These early pieces contain some of Euler's greatest work, the Konigsberg bridge problem, his solution to the Basel problem, and his first proof of the Euler-Fermat theorem. It also presents important results that we seldom realize are due to Euler; that mixed partial derivatives are (usually) equal, our f(x) f(x) notation, and the integrating factor in differential equations. The books shows how contributions in diverse fields are rel...
The year 2007 marks the 300th anniversary of the birth of one of the Enlightenment's most important mathematicians and scientists, Leonhard Euler. This volume is a collection of 24 essays by some of the world's best Eulerian scholars from seven different countries about Euler, his life and his work. Some of the essays are historical, including much previously unknown information about Euler's life, his activities in the St. Petersburg Academy, the influence of the Russian Princess Dashkova, and Euler's philosophy. Others describe his influence on the subsequent growth of European mathematics and physics in the 19th century. Still others give technical details of Euler's innovations in probab...
In 1821, Augustin-Louis Cauchy (1789-1857) published a textbook, the Cours d’analyse, to accompany his course in analysis at the Ecole Polytechnique. It is one of the most influential mathematics books ever written. Not only did Cauchy provide a workable definition of limits and a means to make them the basis of a rigorous theory of calculus, but he also revitalized the idea that all mathematics could be set on such rigorous foundations. Today, the quality of a work of mathematics is judged in part on the quality of its rigor, and this standard is largely due to the transformation brought about by Cauchy and the Cours d’analyse. For this translation, the authors have also added commentary, notes, references, and an index.
Mathematicians have pondered the psychology of the members of our tribe probably since mathematics was invented, but for certain since Hadamard’s The Psychology of Invention in the Mathematical Field. The editors asked two dozen prominent mathematicians (and one spouse thereof) to ruminate on what makes us different. The answers they got are thoughtful, interesting and thought-provoking. Not all respondents addressed the question directly. Michael Atiyah reflects on the tension between truth and beauty in mathematics. T.W. Körner, Alan Schoenfeld and Hyman Bass chose to write, reflectively and thoughtfully, about teaching and learning. Others, including Ian Stewart and Jane Hawkins, write about the sociology of our community. Many of the contributions range into philosophy of mathematics and the nature of our thought processes. Any mathematician will find much of interest here.
Certain constants occupy precise balancing points in the cosmos of number, like habitable planets sprinkled throughout our galaxy at just the right distances from their suns. This book introduces and connects four of these constants (φ,Π,e, and i), each of which has recently been the individual subject of historical and mathematical expositions. But here we discuss their properties, as a group, at a level appropriate for an audience armed only with the tools of elementary calculus. This material offers an excellent excuse to display the power of calculus to reveal elegant truths that are not often seen in college classes. These truths are described here via the work of such luminaries as Nilakantha, Liu Hui, Hemachandra, Khayyam, Newton, Wallis, and Euler.
Sixteen original essays exploring recent developments in the philosophy of mathematics, written in a way mathematicians will understand.
An inspiring collection of a historian's work on the history of mathematics.
An accessible investigation into the mathematics behind collapse processes, ranging from crashing financial markets to extreme weather to ecological disasters.