Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Harmonic Analysis, Partial Differential Equations and Applications
  • Language: en
  • Pages: 319

Harmonic Analysis, Partial Differential Equations and Applications

  • Type: Book
  • -
  • Published: 2017-02-20
  • -
  • Publisher: Birkhäuser

This collection of articles and surveys is devoted to Harmonic Analysis, related Partial Differential Equations and Applications and in particular to the fields of research to which Richard L. Wheeden made profound contributions. The papers deal with Weighted Norm inequalities for classical operators like Singular integrals, fractional integrals and maximal functions that arise in Harmonic Analysis. Other papers deal with applications of Harmonic Analysis to Degenerate Elliptic equations, variational problems, Several Complex variables, Potential theory, free boundaries and boundary behavior of functions.

Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 144

Harmonic Analysis and Partial Differential Equations

Illuminates the relationship between harmonic analysis and partial differential equations. This book covers topics such as application of fully nonlinear, uniformly elliptic equations to the Monge Ampere equation; and estimates for Green functions for the purpose of studying Dirichlet problems for operators in non-divergence form.

Elliptic Partial Differential Equations with Almost-Real Coefficients
  • Language: en
  • Pages: 120

Elliptic Partial Differential Equations with Almost-Real Coefficients

In this monograph the author investigates divergence-form elliptic partial differential equations in two-dimensional Lipschitz domains whose coefficient matrices have small (but possibly nonzero) imaginary parts and depend only on one of the two coordinates. He shows that for such operators, the Dirichlet problem with boundary data in $L^q$ can be solved for $q1$ small enough, and provide an endpoint result at $p=1$.

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)
  • Language: en
  • Pages: 380

Harmonic Analysis, Partial Differential Equations, Complex Analysis, Banach Spaces, and Operator Theory (Volume 1)

  • Type: Book
  • -
  • Published: 2016-09-15
  • -
  • Publisher: Springer

Covering a range of subjects from operator theory and classical harmonic analysis to Banach space theory, this book contains survey and expository articles by leading experts in their corresponding fields, and features fully-refereed, high-quality papers exploring new results and trends in spectral theory, mathematical physics, geometric function theory, and partial differential equations. Graduate students and researchers in analysis will find inspiration in the articles collected in this volume, which emphasize the remarkable connections between harmonic analysis and operator theory. Another shared research interest of the contributors of this volume lies in the area of applied harmonic an...

Differential Equations And Control Theory
  • Language: en
  • Pages: 348

Differential Equations And Control Theory

  • Type: Book
  • -
  • Published: 2001-10-02
  • -
  • Publisher: CRC Press

Provides comprehensive coverage of the most recent developments in the theory of non-Archimedean pseudo-differential equations and its application to stochastics and mathematical physics--offering current methods of construction for stochastic processes in the field of p-adic numbers and related structures. Develops a new theory for parabolic equations over non-Archimedean fields in relation to Markov processes.

Regularity Estimates for Nonlinear Elliptic and Parabolic Problems
  • Language: en
  • Pages: 259

Regularity Estimates for Nonlinear Elliptic and Parabolic Problems

The issue of regularity has played a central role in the theory of Partial Differential Equations almost since its inception, and despite the tremendous advances made it still remains a very fruitful research field. In particular considerable strides have been made in regularity estimates for degenerate and singular elliptic and parabolic equations over the last several years, and in many unexpected and challenging directions. Because of all these recent results, it seemed high time to create an overview that would highlight emerging trends and issues in this fascinating research topic in a proper and effective way. The course aimed to show the deep connections between these topics and to open new research directions through the contributions of leading experts in all of these fields.

Geometry of Random Motion
  • Language: en
  • Pages: 352

Geometry of Random Motion

In July 1987, an AMS-IMS-SIAM Joint Summer Research Conference on Geometry of Random Motion was held at Cornell University. The initial impetus for the meeting came from the desire to further explore the now-classical connection between diffusion processes and second-order (hypo)elliptic differential operators. To accomplish this goal, the conference brought together leading researchers with varied backgrounds and interests: probabilists who have proved results in geometry, geometers who have used probabilistic methods, and probabilists who have studied diffusion processes. Focusing on the interplay between probability and differential geometry, this volume examines diffusion processes on va...

The Dirichlet Problem for Parabolic Operators with Singular Drift Terms
  • Language: en
  • Pages: 129

The Dirichlet Problem for Parabolic Operators with Singular Drift Terms

This memoir considers the Dirichlet problem for parabolic operators in a half space with singular drift terms. Chapter I begins the study of a parabolic PDE modelled on the pullback of the heat equation in certain time varying domains considered by Lewis-Murray and Hofmann-Lewis. Chapter II obtains mutual absolute continuity of parabolic measure and Lebesgue measure on the boundary of this halfspace and also that the $L DEGREESq(R DEGREESn)$ Dirichlet problem for these PDEs has a solution when $q$ is large enough. Chapter III proves an analogue of a theorem of Fefferman, Kenig, and Pipher for certain parabolic PDEs with singular drift terms. Each of the chapters that comprise this memoir has its own numbering system and list

Harmonic Analysis and Partial Differential Equations
  • Language: en
  • Pages: 258

Harmonic Analysis and Partial Differential Equations

This volume contains the Proceedings of the 8th International Conference on Harmonic Analysis and Partial Differential Equations, held in El Escorial, Madrid, Spain, on June 16-20, 2008. Featured in this book are papers by Steve Hoffmann and Carlos Kenig, which are based on two mini-courses given at the conference. These papers present topics of current interest, which assume minimal background from the reader, and represent state-of-the-art research in a useful way for young researchers. Other papers in this volume cover a range of fields in Harmonic Analysis and Partial Differential Equations and, in particular, illustrate well the fruitful interplay between these two fields.