You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book introduces some important progress in the theory of Calderon-Zygmund singular integrals, oscillatory singular integrals, and Littlewood-Paley theory over the last decade. It includes some important research results by the authors and their cooperators, such as singular integrals with rough kernels on Block spaces and Hardy spaces, the criterion on boundedness of oscillatory singular integrals, and boundedness of the rough Marcinkiewicz integrals. These results have frequently been cited in many published papers.
This book develops a new theory of multi-parameter singular integrals associated with Carnot-Carathéodory balls. Brian Street first details the classical theory of Calderón-Zygmund singular integrals and applications to linear partial differential equations. He then outlines the theory of multi-parameter Carnot-Carathéodory geometry, where the main tool is a quantitative version of the classical theorem of Frobenius. Street then gives several examples of multi-parameter singular integrals arising naturally in various problems. The final chapter of the book develops a general theory of singular integrals that generalizes and unifies these examples. This is one of the first general theories of multi-parameter singular integrals that goes beyond the product theory of singular integrals and their analogs. Multi-parameter Singular Integrals will interest graduate students and researchers working in singular integrals and related fields.
We prove that the kernel of the action of the modular group on the center of a semisimple factorizable Hopf algebra is a congruence subgroup whenever this action is linear. If the action is only projective, we show that the projective kernel is a congruence subgroup. To do this, we introduce a class of generalized Frobenius-Schur indicators and endow it with an action of the modular group that is compatible with the original one.
In the framework of algebraic supergeometry, the authors give a construction of the scheme-theoretic supergeometric analogue of split reductive algebraic group-schemes, namely affine algebraic supergroups associated to simple Lie superalgebras of classical type. In particular, all Lie superalgebras of both basic and strange types are considered. This provides a unified approach to most of the algebraic supergroups considered so far in the literature, and an effective method to construct new ones. The authors' method follows the pattern of a suitable scheme-theoretic revisitation of Chevalley's construction of semisimple algebraic groups, adapted to the reductive case. As an intermediate step, they prove an existence theorem for Chevalley bases of simple classical Lie superalgebras and a PBW-like theorem for their associated Kostant superalgebras.
Let $X$ be a metric space with doubling measure, and $L$ be a non-negative, self-adjoint operator satisfying Davies-Gaffney bounds on $L^2(X)$. In this article the authors present a theory of Hardy and BMO spaces associated to $L$, including an atomic (or molecular) decomposition, square function characterization, and duality of Hardy and BMO spaces. Further specializing to the case that $L$ is a Schrodinger operator on $\mathbb{R}^n$ with a non-negative, locally integrable potential, the authors establish additional characterizations of such Hardy spaces in terms of maximal functions. Finally, they define Hardy spaces $H^p_L(X)$ for $p>1$, which may or may not coincide with the space $L^p(X)$, and show that they interpolate with $H^1_L(X)$ spaces by the complex method.
It is a widespread opinion among experts that (continuous) bounded cohomology cannot be interpreted as a derived functor and that triangulated methods break down. The author proves that this is wrong. He uses the formalism of exact categories and their derived categories in order to construct a classical derived functor on the category of Banach $G$-modules with values in Waelbroeck's abelian category. This gives us an axiomatic characterization of this theory for free, and it is a simple matter to reconstruct the classical semi-normed cohomology spaces out of Waelbroeck's category. The author proves that the derived categories of right bounded and of left bounded complexes of Banach $G$-modules are equivalent to the derived category of two abelian categories (one for each boundedness condition), a consequence of the theory of abstract truncation and hearts of $t$-structures. Moreover, he proves that the derived categories of Banach $G$-modules can be constructed as the homotopy categories of model structures on the categories of chain complexes of Banach $G$-modules, thus proving that the theory fits into yet another standard framework of homological and homotopical algebra.
The book is focused on physical interpretation and visualization of the obtained invariant solutions for nonlinear mathematical modeling of atmospheric and ocean waves. This volume represents a unique blend of analytical and numerical methods complemented by the author's developments in ocean and atmospheric sciences and it is meant for researchers and graduate students interested in applied mathematics and mathematical modeling.
A new class of (not necessarily bounded) operators related to (mainly infinite) directed trees is introduced and investigated. Operators in question are to be considered as a generalization of classical weighted shifts, on the one hand, and of weighted adjacency operators, on the other; they are called weighted shifts on directed trees. The basic properties of such operators, including closedness, adjoints, polar decomposition and moduli are studied. Circularity and the Fredholmness of weighted shifts on directed trees are discussed. The relationships between domains of a weighted shift on a directed tree and its adjoint are described. Hyponormality, cohyponormality, subnormality and complete hyperexpansivity of such operators are entirely characterized in terms of their weights. Related questions that arose during the study of the topic are solved as well.
"November 2012, volume 220, number 1035 (third of 4 numbers)."
This is the first treatment entirely dedicated to an analytic study of spectral flow for paths of selfadjoint Fredholm operators, possibly unbounded or understood in a semifinite sense. The importance of spectral flow for homotopy and index theory is discussed in detail. Applications concern eta-invariants, the Bott-Maslov and Conley-Zehnder indices, Sturm-Liouville oscillation theory, the spectral localizer and bifurcation theory.