You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the refereed proceedings of the 26th Conference on Medical Image Understanding and Analysis, MIUA 2022, held in Cambridge, UK, in July 2022. The 65 full papers presented were carefully reviewed and selected from 95 submissions. They were organized according to following topical sections: biomarker detection; image registration, and reconstruction; image segmentation; generative models, biomedical simulation and modelling; classification; image enhancement, quality assessment, and data privacy; radiomics, predictive models, and quantitative imaging. Chapter “FCN-Transformer Feature Fusion for Polyp Segmentation” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.
This book introduces the mathematical concept of partial differential equations (PDE) for virtual image restoration. It provides insight in mathematical modelling, partial differential equations, functional analysis, variational calculus, optimisation and numerical analysis. It is addressed towards generally informed mathematicians and graduate students in mathematics with an interest in image processing and mathematical analysis.
This handbook gathers together the state of the art on mathematical models and algorithms for imaging and vision. Its emphasis lies on rigorous mathematical methods, which represent the optimal solutions to a class of imaging and vision problems, and on effective algorithms, which are necessary for the methods to be translated to practical use in various applications. Viewing discrete images as data sampled from functional surfaces enables the use of advanced tools from calculus, functions and calculus of variations, and nonlinear optimization, and provides the basis of high-resolution imaging through geometry and variational models. Besides, optimization naturally connects traditional model...
This book deals with the advantages of using artificial intelligence (AI) in the fight against the COVID-19 and against future pandemics that could threat humanity and our environment. This book is a practical, scientific and clinically relevant example of how medicine and mathematics will fuse in the 2020s, out of external pandemic pressure and out of scientific evolutionary necessity. This book contains a unique blend of the world's leading researchers, both in medicine, mathematics, computer science, clinical and preclinical medicine, and presents the research front of the usage of AI against pandemics. Equipped with this book the reader will learn about the latest AI advances against COVID-19, and how mathematics and algorithms can aid in preventing its spreading course, treatments, diagnostics, vaccines, clinical management and future evolution.
This book explores the history of visual technology and archaeology and outlines how the introduction of interactive 3D computer modelling to the discipline parallels very closely the earlier integration of photography into archaeological fieldwork.
This book constitutes the refereed proceedings of the 23rd Conference on Medical Image Understanding and Analysis, MIUA 2019, held in Liverpool, UK, in July 2019. The 43 full papers presented were carefully reviewed and selected from 70 submissions. There were organized in topical sections named: oncology and tumour imaging; lesion, wound and ulcer analysis; biostatistics; fetal imaging; enhancement and reconstruction; diagnosis, classification and treatment; vessel and nerve analysis; image registration; image segmentation; ophthalmic imaging; and posters.
Zusammenfassung: This two-volume set LNCS 14859-14860 constitutes the proceedings of the 28th Annual Conference on Medical Image Understanding and Analysis, MIUA 2024, held in Manchester, UK, during July 24-26, 2024. The 59 full papers included in this book were carefully reviewed and selected from 93 submissions. They were organized in topical sections as follows: Part I : Advancement in Brain Imaging; Medical Images and Computational Models; and Digital Pathology, Histology and Microscopic Imaging. Part II : Dental and Bone Imaging; Enhancing Low-Quality Medical Images; Domain Adaptation and Generalisation; and Dermatology, Cardiac Imaging and Other Medical Imaging
With a focus on the interplay between mathematics and applications of imaging, the first part covers topics from optimization, inverse problems and shape spaces to computer vision and computational anatomy. The second part is geared towards geometric control and related topics, including Riemannian geometry, celestial mechanics and quantum control. Contents: Part I Second-order decomposition model for image processing: numerical experimentation Optimizing spatial and tonal data for PDE-based inpainting Image registration using phase・amplitude separation Rotation invariance in exemplar-based image inpainting Convective regularization for optical flow A variational method for quantitative ph...
This book constitutes the proceedings of the 7th International Conference on Scale Space and Variational Methods in Computer Vision, SSVM 2019, held in Hofgeismar, Germany, in June/July 2019. The 44 papers included in this volume were carefully reviewed and selected for inclusion in this book. They were organized in topical sections named: 3D vision and feature analysis; inpainting, interpolation and compression; inverse problems in imaging; optimization methods in imaging; PDEs and level-set methods; registration and reconstruction; scale-space methods; segmentation and labeling; and variational methods.
Inverse problems such as imaging or parameter identification deal with the recovery of unknown quantities from indirect observations, connected via a model describing the underlying context. While traditionally inverse problems are formulated and investigated in a static setting, we observe a significant increase of interest in time-dependence in a growing number of important applications over the last few years. Here, time-dependence affects a) the unknown function to be recovered and / or b) the observed data and / or c) the underlying process. Challenging applications in the field of imaging and parameter identification are techniques such as photoacoustic tomography, elastography, dynamic computerized or emission tomography, dynamic magnetic resonance imaging, super-resolution in image sequences and videos, health monitoring of elastic structures, optical flow problems or magnetic particle imaging to name only a few. Such problems demand for innovation concerning their mathematical description and analysis as well as computational approaches for their solution.