You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applications. More than 135 figures supplement the text.Features theory, techniques, and applicationsPresents alternative theoretical approaches including multiresolution analysis, splines, minimum entropy, and fractal aspectsContributors cover a broad range of approaches and applications
This book presents a collection of high-quality papers in applied and numerical mathematics, as well as approximation theory, all closely related to Wolfgang Dahmen’s scientific contributions. Compiled in honor of his 75th birthday, the papers are written by leading experts and cover topics including nonlinear approximation theory, numerical analysis of partial differential equations, learning theory, and electron microscopy. A unifying theme throughout the collection is the emphasis on a solid mathematical foundation, which serves as the basis for the most efficient numerical algorithms used to simulate complex phenomena.
Walter Gautschi has written extensively on topics ranging from special functions, quadrature and orthogonal polynomials to difference and differential equations, software implementations, and the history of mathematics. He is world renowned for his pioneering work in numerical analysis and constructive orthogonal polynomials, including a definitive textbook in the former, and a monograph in the latter area. This three-volume set, Walter Gautschi: Selected Works with Commentaries, is a compilation of Gautschi’s most influential papers and includes commentaries by leading experts. The work begins with a detailed biographical section and ends with a section commemorating Walter’s prematurel...
In recent years, scientists have applied the principles of complex systems science to increasingly diverse fields. The results have been nothing short of remarkable. The Third International Conference on Complex Systems attracted over 400 researchers from around the world. The conference aimed to encourage cross-fertilization between the many disciplines represented and to deepen our understanding of the properties common to all complex systems.
"Contains the contributions of 45 internationally distinguished mathematicians covering all areas of approximation theory-written in honor of the pioneering work of Arun K. Varma to the fields of interpolation and approximation of functions, including Birhoff interpolation and approximation by spline functions."
This text details advances in learning theory that relate to problems studied in neural networks, machine learning, mathematics and statistics.
The papers in this book, first presented at a 1986 AMS Short Course, give a brief introduction to approximation theory and some of its current areas of active research, both theoretical and applied. The first lecture describes and illustrates the basic concerns of the field. Topics highlighted in the other lectures include the following: approximation in the complex domain, $N$-width, optimal recovery, interpolation, algorithms for approximation, and splines, with a strong emphasis on a multivariate setting for the last three topics. The book is aimed at mathematicians interested in an introduction to areas of current research and to engineers and scientists interested in exploring the field for possible applications to their own fields. The book is best understood by those with a standard first graduate course in real and complex analysis, but some of the presentations are accessible with the minimal requirements of advanced calculus and linear algebra.
These are the Proceedings of the NATO Advanced Study Institute on Approximation Theory, Spline Functions and Applications held in the Hotel villa del Mare, Maratea, Italy between April 28,1991 and May 9, 1991. The principal aim of the Advanced Study Institute, as reflected in these Proceedings, was to bring together recent and up-to-date developments of the subject, and to give directions for future research. Amongst the main topics covered during this Advanced Study Institute is the subject of uni variate and multivariate wavelet decomposition over spline spaces. This is a relatively new area in approximation theory and an increasingly impor tant subject. The work involves key techniques in...
‘Subdivision’ is a way of representing smooth shapes in a computer. A curve or surface (both of which contain an in?nite number of points) is described in terms of two objects. One object is a sequence of vertices, which we visualise as a polygon, for curves, or a network of vertices, which we visualise by drawing the edges or faces of the network, for surfaces. The other object is a set of rules for making denser sequences or networks. When applied repeatedly, the denser and denser sequences are claimed to converge to a limit, which is the curve or surface that we want to represent. This book focusses on curves, because the theory for that is complete enough that a book claiming that ou...