You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Wavelets: Theory, Algorithms, and Applications is the fifth volume in the highly respected series, WAVELET ANALYSIS AND ITS APPLICATIONS. This volume shows why wavelet analysis has become a tool of choice infields ranging from image compression, to signal detection and analysis in electrical engineering and geophysics, to analysis of turbulent or intermittent processes. The 28 papers comprising this volume are organized into seven subject areas: multiresolution analysis, wavelet transforms, tools for time-frequency analysis, wavelets and fractals, numerical methods and algorithms, and applications. More than 135 figures supplement the text.Features theory, techniques, and applicationsPresents alternative theoretical approaches including multiresolution analysis, splines, minimum entropy, and fractal aspectsContributors cover a broad range of approaches and applications
Industrial mathematics is evolving into an important branch of mathematics. Mathematicians, in particular in Italy, are becoming increasingly aware of this new trend and are engaged in bridging the gap between highly specialized mathematical research and the emerging demand for innovation from industry. The contributions in this volume provide both R&D workers in industry with a general view of existing skills, and academics with state-of-the-art applications of mathematics to real-world problems, which may also be incorporated in advanced courses.
Industrial mathematics is evolving into an important branch of mathematics. Mathematicians, in particular in Italy, are becoming increasingly aware of this new trend and are engaged in bridging the gap between highly specialized mathematical research and the emerging demand for innovation from industry. The contributions in this volume provide both R&D workers in industry with a general view of existing skills, and academics with state-of-the-art applications of mathematics to real-world problems, which may also be incorporated in advanced courses.
This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.
This volume explains how the recent advances in wavelet analysis provide new means for multiresolution analysis and describes its wide array of powerful tools. The book covers variations of the windowed Fourier transform, constructions of special waveforms suitable for specific tasks, the use of redundant representations in reconstruction and enhancement, applications of efficient numerical compression as a tool for fast numerical analysis, and approximation properties of various waveforms in different contexts.
The purpose of this book is to give a comprehensive introduction to the theory of spline functions, together with some applications to various fields, emphasizing the significance of the relationship between the general theory and its applications. At the same time, the goal of the book is also to provide new ma terial on spline function theory, as well as a fresh look at old results, being written for people interested in research, as well as for those who are interested in applications. The theory of spline functions and their applications is a relatively recent field of applied mathematics. In the last 50 years, spline function theory has undergone a won derful development with many new directions appearing during this time. This book has its origins in the wish to adequately describe this development from the notion of 'spline' introduced by 1. J. Schoenberg (1901-1990) in 1946, to the newest recent theories of 'spline wavelets' or 'spline fractals'. Isolated facts about the functions now called 'splines' can be found in the papers of L. Euler, A. Lebesgue, G. Birkhoff, J.
Time frequency analysis has been the object of intense research activity in the last decade. This book gives a self-contained account of methods recently introduced to analyze mathematical functions and signals simultaneously in terms of time and frequency variables. The book gives a detailed presentation of the applications of these transforms to signal processing, emphasizing the continuous transforms and their applications to signal analysis problems, including estimation, denoising, detection, and synthesis. To help the reader perform these analyses, Practical Time-Frequency Analysis provides a set of useful tools in the form of a library of S functions, downloadable from the authors' Web sites in the United States and France. - Detailed presentation of the Wavelet and Gabor transforms - Applications to deterministic and random signal theory - Spectral analysis of nonstationary signals and processes - Numerous practical examples ranging from speech analysis to underwater acoustics, earthquake engineering, internet traffic, radar signal denoising, medical data interpretation, etc - Accompanying software and data sets, freely downloadable from the book's Web page
This is the collection of the refereed and edited papers presented at the 8th Texas International Conference on Approximation Theory. It is interdisciplinary in nature and consists of two volumes. The central theme of Vol. I is the core of approximation theory. It includes such important areas as qualitative approximations, interpolation theory, rational approximations, radial-basis functions, and splines. The second volume focuses on topics related to wavelet analysis, including multiresolution and multi-level approximation, subdivision schemes in CAGD, and applications.
This book provides an up-to-date overview of research articles in applied and industrial mathematics in Italy. This is done through the presentation of a number of investigations focusing on subjects as nonlinear optimization, life science, semiconductor industry, cultural heritage, scientific computing and others. This volume is important as it gives a report on modern applied and industrial mathematics, and will be of specific interest to the community of applied mathematicians. This book collects selected papers presented at the 9th Conference of SIMAI. The subjects discussed include image analysis methods, optimization problems, mathematics in the life sciences, differential models in ap...
None