You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Extending modules are generalizations of injective modules and, dually, lifting modules generalize projective supplemented modules. This duality exhibits a certain asymmetry. While the theory of extending modules is well documented in monographs and text books, the purpose of this monograph is to provide a thorough study of supplements and projectivity conditions needed to investigate classes of modules related to lifting modules.
This volume consists of seven papers related in various matters to the research work of Kostia Beidar†, a distinguished ring theorist and professor of National Ching Kung University (NCKU). Written by leading experts in these areas, the papers also emphasize important applications to other fields of mathematics. Most papers are based on talks that were presented at the memorial conference which was held in March 2005 at NCKU.
This book contains the proceedings of the Fifth International Conference on Noncommutative Rings and their Applications, held from June 12–15, 2017, at the University of Artois, Lens, France. The papers are related to noncommutative rings, covering topics such as: ring theory, with both the elementwise and more structural approaches developed; module theory with popular topics such as automorphism invariance, almost injectivity, ADS, and extending modules; and coding theory, both the theoretical aspects such as the extension theorem and the more applied ones such as Construction A or Reed–Muller codes. Classical topics like enveloping skewfields, weak Hopf algebras, and tropical algebras are also presented.
This book documents the rich structure of the holomorphic Q function spaces which are geometric in the sense that they transform naturally under conformal mappings, with particular emphasis on recent development based on interaction between geometric function and measure theory and other branches of mathematical analysis, including potential theory, harmonic analysis, functional analysis, and operator theory. Largely self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces. Self-contained, the book functions as an instructional and reference work for advanced courses and research in conformal analysis, geometry, and function spaces.
Surveying the most influential developments in the field, this proceedings reviews the latest research on algebras and their representations, commutative and non-commutative rings, modules, conformal algebras, and torsion theories.The volume collects stimulating discussions from world-renowned names including Tsit-Yuen Lam, Larry Levy, Barbara Osofsky, and Patrick Smith.
Contains the Proceedings of an International Conference on Noncommutative Rings and Their Applications, held July 1-4, 2013, at the Universite d'Artois, Lens, France. It presents recent developments in the theories of noncommutative rings and modules over such rings as well as applications of these to coding theory, enveloping algebras, and Leavitt path algebras.
This volume contains the proceedings of the conference A Panorama on Singular Varieties, celebrating the 70th birthday of Lê Dũng Tráng, held from February 7–10, 2017, at the University of Seville, IMUS, Seville, Spain. The articles cover a wide range of topics in the study of singularities and should be of great value to graduate students and research faculty who have a basic background in the theory of singularities.
This volume contains the proceedings of the International Conference on Algebra, Discrete Mathematics and Applications, held from December 9–11, 2017, at Dr. Babasaheb Ambedkar Marathwada University, Aurangabad (Maharashtra), India. Contemporary topics of research in algebra and its applications to algebraic geometry, Lie groups, algebraic combinatorics, and representation theory are covered. The articles are devoted to Leavitt path algebras, roots of elements in Lie groups, Hilbert's Nullstellensatz, mixed multiplicities of ideals, singular matrices, rings of integers, injective hulls of modules, representations of linear, symmetric groups and Lie algebras, the algebra of generic matrices and almost injective modules.
This volume contains contributions from speakers at the 2015–2018 joint Johns Hopkins University and University of Maryland Complex Geometry Seminar. It begins with a survey article on recent developments in pluripotential theory and its applications to Kähler–Einstein metrics and continues with articles devoted to various aspects of the theory of complex manifolds and functions on such manifolds.
This volume contains the proceedings of the Workshop on Motivic Homotopy Theory and Refined Enumerative Geometry, held from May 14–18, 2018, at the Universität Duisburg-Essen, Essen, Germany. It constitutes an accessible yet swift introduction to a new and active area within algebraic geometry, which connects well with classical intersection theory. Combining both lecture notes aimed at the graduate student level and research articles pointing towards the manifold promising applications of this refined approach, it broadly covers refined enumerative algebraic geometry.