You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
As part of the Physics 2010 decadal survey project, the National Research Council was asked by the Department of Energy and the National Science Foundation to recommend priorities for the U.S. particle physics program for the next 15 years. The challenge faced in this study was to identify a compelling leadership role for the United States in elementary particle physics given the global nature of the field and the current lack of a long-term and distinguishing strategic focus. Revealing the Hidden Nature of Space and Time provides an assessment of the scientific challenges in particle physics, including the key questions and experimental opportunities, the current status of the U.S. program and the strategic framework in which it sits and a set of strategic principles and recommendations to sustain a competitive and globally relevant U.S. particle physics program.
None
Space-based laboratory research in fundamental physics is an emerging research discipline that offers great discovery potential and at the same time could drive the development of technological advances which are likely to be important to scientists and technologists in many other different research fields. The articles in this review volume have been contributed by participants of the international workshop “From Quantum to Cosmos: Fundamental Physics Research in Space” held at the Airlie Center in Warrenton, Virginia, USA, on May 21-24, 2006. This unique volume discusses the advances in our understanding of fundamental physics that are anticipated in the near future, and evaluates the ...
Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.
Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.
None
Over ten years ago, U.S. nuclear scientists proposed construction of a new rare isotope accelerator in the United States, which would enable experiments to elucidate the important questions in nuclear physics. To help assess this proposal, DOE and NSF asked the NRC to define the science agenda for a next-generation U.S. Facility for Rare Isotope Beams (FRIB). As the study began, DOE announced a substantial reduction in the scope of this facility and put off its initial operation date by several years. The study focused on an evaluation of the science that could be accomplished on a facility reduced in scope. This report provides a discussion of the key science drivers for a FRIB, an assessment of existing domestic and international rare isotope beams, an assessment of the current U.S. position about the FRIB, and a set of findings and conclusions about the scientific and policy context for such a facility.
Part of the Physics in a New Era series of assessments of the various branches of the field, Elementary-Particle Physics reviews progress in the field over the past 10 years and recommends actions needed to address the key questions that remain unanswered. It explains in simple terms the present picture of how matter is constructed. As physicists have probed ever deeper into the structure of matter, they have begun to explore one of the most fundamental questions that one can ask about the universe: What gives matter its mass? A new international accelerator to be built at the European laboratory CERN will begin to explore some of the mechanisms proposed to give matter its heft. The committee recommends full U.S. participation in this project as well as various other experiments and studies to be carried out now and in the longer term.