You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
In May 2007, the National Academies Chemical Sciences Roundtable held a public workshop on the topic of Bioinspired Chemistry for Energy, where government, academic, and industry representatives discussed promising research developments in solar-generated fuels, hydrogen-processing enzymes, artificial photosynthetic systems, and biological-based fuel cells. Workshop participants identified the need for a follow-up activity that would explore bioinspired energy processes in more depth and involve a wider array of disciplines as speakers and participants. Particularly, workshop participants stressed the importance of holding a workshop that would include more researchers from the biological sc...
In May 2007, the National Academies Chemical Sciences Roundtable held a public workshop on the topic of Bioinspired Chemistry for Energy, where government, academic, and industry representatives discussed promising research developments in solar-generated fuels, hydrogen-processing enzymes, artificial photosynthetic systems, and biological-based fuel cells. Workshop participants identified the need for a follow-up activity that would explore bioinspired energy processes in more depth and involve a wider array of disciplines as speakers and participants. Particularly, workshop participants stressed the importance of holding a workshop that would include more researchers from the biological sc...
Despite the increase in funding for research and the rising numbers of peer-reviewed publications over the past decade that address the environmental, health, and safety aspects of engineered nanomaterials (ENMs), uncertainty about the implications of potential exposures of consumers, workers, and ecosystems to these materials persists. Consumers and workers want to know which of these materials they are exposed to and whether the materials can harm them. Industry is concerned about being able to predict with sufficient certainty whether products that it makes and markets will pose any environmental, health or safety issues and what measures should be taken regarding manufacturing practices ...
Biomimicry for Materials, Design and Habitats: Innovations and Applications and is a survey of the recent work of recognized experts in a variety of fields who employ biomimicry and related paradigms to solve key problems of interest within design, science, technology, and society. Topics covered include innovations from biomimicry in materials, product design, architecture, and biological sciences. The book is a useful resource for educators, designers, researchers, engineers, and materials scientists, taking them from the theory behind biomimicry to real world applications. Living systems have evolved innovative solutions to challenges that humans face on a daily basis. Nonlinear multifunc...
Convergence of the life sciences with fields including physical, chemical, mathematical, computational, engineering, and social sciences is a key strategy to tackle complex challenges and achieve new and innovative solutions. However, institutions face a lack of guidance on how to establish effective programs, what challenges they are likely to encounter, and what strategies other organizations have used to address the issues that arise. This advice is needed to harness the excitement generated by the concept of convergence and channel it into the policies, structures, and networks that will enable it to realize its goals. Convergence investigates examples of organizations that have established mechanisms to support convergent research. This report discusses details of current programs, how organizations have chosen to measure success, and what has worked and not worked in varied settings. The report summarizes the lessons learned and provides organizations with strategies to tackle practical needs and implementation challenges in areas such as infrastructure, student education and training, faculty advancement, and inter-institutional partnerships.
Technologies such as synthetic biology, nanotechnology, artificial intelligence, and geoengineering promise to address many of our most serious problems, yet they also bring environmental and health-related risks and uncertainties. Moreover, they can come to dominate global production systems and markets with very little public input or awareness. Existing governance institutions and processes do not adequately address the risks of new technologies, nor do they give much consideration to the concerns of persons affected by them. Instead of treating technology, health, and the environment as discrete issues, Albert C. Lin argues that laws must acknowledge their fundamental relationship, anticipating both future technological developments and their potential adverse effects. Laws should encourage international cooperation and the development of common global standards, while allowing for flexibility and reassessment.
Research and innovation in the life sciences is driving rapid growth in agriculture, biomedical science, information science and computing, energy, and other sectors of the U.S. economy. This economic activity, conceptually referred to as the bioeconomy, presents many opportunities to create jobs, improve the quality of life, and continue to drive economic growth. While the United States has been a leader in advancements in the biological sciences, other countries are also actively investing in and expanding their capabilities in this area. Maintaining competitiveness in the bioeconomy is key to maintaining the economic health and security of the United States and other nations. Safeguarding...
Bioinspired materials can be defined as the organic or inorganic materials that mimic naturally occurring substances. With applications in a number of fields such as biomedical, chemical, mechanical, and civil engineering, research on the development of biologically-inspired materials is essential to further advancement. Emerging Research on Bioinspired Materials Engineering provides insight on fabrication strategies for bioinspired materials as well as a collective review of their current and prospective applications. Highlighting essential research on bioinspired processes and the nano-structural, physical, chemical, thermal, and mechanical aspects of biologically-inspired materials, this timely publication is an ideal reference source for engineers, researchers, scholars, and graduate students in the fields of materials science and engineering, nanotechnology, biotechnology, and biomedical materials science.