You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Wigner's quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence, quantum computing, and quantum chaos. It is also important in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative, formulation of quantum mechanics, independent of the conventional Hilbert space, or path integral formulations.In this logically complete and self-standing formulation, one need not choose side...
Wigner's quasi-probability distribution function in phase space is a special (Weyl) representation of the density matrix. It has been useful in describing quantum transport in quantum optics; nuclear physics; decoherence, quantum computing, and quantum chaos. It is also important in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its internal logic, pioneered by Groenewold and Moyal, has only emerged in the last quarter-century: it furnishes a third, alternative, formulation of quantum mechanics, independent of the conventional Hilbert space, or path integral formulations.In this logically complete and self-standing formulation, one need not choose side...
This proceedings volume is sixth in the series of international conferences covering the fission, quasi-fission, fusion-fission phenomena and synthesis of superheavy nuclei, mainly at low or near barrier energies. Both experimental and theoretical issues are covered. The topics are discussed by a group of participants, and an overview of the current activities in the field is given.
None
This is a text on quantum mechanics formulated simultaneously in terms of position and momentum, i.e. in phase space. It is written at an introductory level, drawing on the remarkable history of the subject for inspiration and motivation. Wigner functions — density matrices in a special Weyl representation — and star products are the cornerstones of the formalism.The resulting framework is a rich source of physical intuition. It has been used to describe transport in quantum optics, structure and dynamics in nuclear physics, chaos, and decoherence in quantum computing. It is also of importance in signal processing and the mathematics of algebraic deformation. A remarkable aspect of its i...
This volume is a collection of papers presented at the XIII International Workshop on Real and Complex Singularities, held from July 27–August 8, 2014, in São Carlos, Brazil, in honor of María del Carmen Romero Fuster's 60th birthday. The volume contains the notes from two mini-courses taught during the workshop: on intersection homology by J.-P. Brasselet, and on non-isolated hypersurface singularities and Lê cycles by D. Massey. The remaining contributions are research articles which cover topics from the foundations of singularity theory (including classification theory and invariants) to topology of singular spaces (links of singularities and semi-algebraic sets), as well as applications to topology (cobordism and Lefschetz fibrations), dynamical systems (Morse-Bott functions) and differential geometry (affine geometry, Gauss-maps, caustics, frontals and non-Euclidean geometries). This book is published in cooperation with Real Sociedad Matemática Española (RSME)
This volume contains the greater part of the papers submitted to the Information Processing in Biology portion of the 1983 Orbis Scientiae, then dedicated to the eightieth year of Professor P.A.M. Dirac. Before the volume could be published, Professor Dirac passed away on October 20, 1984, thereby changing the dedica tion of this volume, and its companion, on High Energy Physics, to his everlasting memory. The last Orbis Scientiae (as it was often in the past) was shared by two frontier fields - in this case by High Energy Physics and Information Processing in Biology, demonstrating the universality of scientific principles and goals. The interaction amongst scientists of diverse interests c...
Superintegrable systems are integrable systems (classical and quantum) that have more integrals of motion than degrees of freedom. Such systems have many interesting properties. This title is based on the Workshop on Superintegrability in Classical and Quantum Systems organized by the Centre de Recherches Mathematiques in Montreal (Quebec).
Superintegrable systems are integrable systems (classical and quantum) that have more integrals of motion than degrees of freedom. Such systems have many interesting properties. This title is based on the Workshop on Superintegrability in Classical and Quantum Systems organized by the Centre de Recherches Mathematiques in Montreal (Quebec).