You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book covers basic and advanced aspects in the field of Topological Matter. The chapters are based on the lectures presented during the Topological Matter School 2017. It provides graduate level content introducing the basic concepts of the field, including an introductory session on group theory and topological classification of matter. Different topological phases such as Weyls semi-metals, Majoranas fermions and topological superconductivity are also covered. A review chapter on the major experimental achievements in the field is also provided. The book is suitable not only for master, graduate and young postdoctoral researchers, but also to senior scientists who want to acquaint themselves with the subject.
This book is a snapshot of the vision shared by outstanding scientists on the key theoretical and experimental issues in Mesoscopic Physics. Quantum properties of electrons in solid state devices and transport in semiconducting and superconducting low-dimensional systems, are discussed, as well as the basis of quantum computing (entanglement, noise decoherence and read-out). Each chapter collects the material presented at a Varenna School course of last year, by leading experts in the field. The reader gets a flavor, how theorists and experimentalists are paving the way to the physical realization of solid state qubits, the basic units of the new logic and memory elements for quantum process...
This is the last of three volumes of the extensively revised and updated second edition of the Handbook of Superconductivity. The past twenty years have seen rapid progress in superconducting materials, which exhibit one of the most remarkable physical states of matter ever to be discovered. Superconductivity brings quantum mechanics to the scale of the everyday world. Viable applications of superconductors rely fundamentally on an understanding of these intriguing phenomena and the availability of a range of materials with bespoke properties to meet practical needs. While the first volume covers fundamentals and various classes of materials, the second addresses processing of these into var...
While our five senses are doing a reasonably good job at representing the world around us on a macro-scale, we have no existing intuitive representation of the nanoworld, ruled by laws entirely foreign to our experience. This is where molecules mingle to create proteins; where you wouldn't recognize water as a liquid; and where minute morphological changes would reveal how much 'solid' things, such as the ground or houses, are constantly vibrating and moving. Following in the footsteps of Nano-Society and Nanotechnology: The Future is Tiny, this title introduces a new collection of stories demonstrating recent research in the field of nanotechnology. This drives home the fact that a plethora...
None
The 60th anniversary edition of this classic and unrivalled optics reference work includes a special foreword by Sir Peter Knight.
An introduction to the role of Berry phases in our modern understanding of the physics of electrons in solids.
This book starts with the description of polarization in classical optics, including also a chapter on crystal optics, which is necessary to understand the use of nonlinear crystals. In addition, spatially non-uniform polarization states are introduced and described. Further, the role of polarization in nonlinear optics is discussed. The final chapters are devoted to the description and applications of polarization in quantum optics and quantum technologies.