You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
CO«i»b.H BaCHJIbeBHa lU>BaJIeBcR8JI (Sonja Kovalevsky) was born in Moscow in 1850 and died in Stockholm in 1891. Between these years, in the then changing and turbulent circumstances for Europe, lies the all too brief life of this remarkable woman. This life was lived out within the great European centers of power and learning in Russia, France, Germany, Switzerland, England and Sweden. To this day, now 150 years after her birth, her influence for and contribution to mathe matics, science, literature, women's rights and democratic government are recorded and reviewed, not only in Europe but now in countries far removed in time and distance from the lands of her birth and being. This volume...
This book collects selected papers written by invited and plenary speakers of the 15th International Congress on Mathematical Physics (ICMP) in the aftermath of the conference. In extensive review articles and expository texts as well as advanced research articles the world leading experts present the state of the art in modern mathematical physics. New mathematical concepts and ideas are introduced by prominent mathematicalphysicists and mathematicians, covering among others the fields of Dynamical Systems, Operator Algebras, Partial Differential Equations, Probability Theory, Random Matrices, Condensed Matter Physics, Statistical Mechanics, General Relativity, Quantum Mechanics, Quantum Field Theory, Quantum Information and String Theory. All together the contributions in this book give a panoramic view of the latest developments in mathematical physics. They will help readers with a general interest in mathematical physics to get an update on the most recent developments in their field, and give a broad overview on actual and future research directions in this fascinating and rapidly expanding area.
Being both a beautiful theory and a valuable tool, Lie algebras form a very important area of mathematics. This modern introduction targets entry-level graduate students. It might also be of interest to those wanting to refresh their knowledge of the area and be introduced to newer material. Infinite dimensional algebras are treated extensively along with the finite dimensional ones. After some motivation, the text gives a detailed and concise treatment of the Killing–Cartan classification of finite dimensional semisimple algebras over algebraically closed fields of characteristic 0. Important constructions such as Chevalley bases follow. The second half of the book serves as a broad intro...
"Even as other disciplines have moved toward using whiteboards and projectors in their teaching and research, the mathematics community has largely remained wedded to the chalkboard. Chalkboards are not only an important tool for mathematical thought, but also a mainstay of mathematical culture-so much so that mathematicians have been known to stockpile particular types of chalk. In Do Not Erase, photographer Jessica Wynne explores the role of the chalkboard in mathematics through a series of photographs of mathematicians' chalkboards and accompanying essays. This book pays homage to the mathematician's cherished chalk board as a means to unlocking mathematical creative expression. The photo...
A contemporary exploration of the interplay between geometry, spectral theory and stochastics which is explored for graphs and manifolds.
The main topic of the book is amenable groups, i.e., groups on which there exist invariant finitely additive measures. It was discovered that the existence or non-existence of amenability is responsible for many interesting phenomena such as, e.g., the Banach-Tarski Paradox about breaking a sphere into two spheres of the same radius. Since then, amenability has been actively studied and a number of different approaches resulted in many examples of amenable and non-amenable groups. In the book, the author puts together main approaches to study amenability. A novel feature of the book is that the exposition of the material starts with examples which introduce a method rather than illustrating it. This allows the reader to quickly move on to meaningful material without learning and remembering a lot of additional definitions and preparatory results; those are presented after analyzing the main examples. The techniques that are used for proving amenability in this book are mainly a combination of analytic and probabilistic tools with geometric group theory.
This Festschrift had its origins in a conference called SimonFest held at Caltech, March 27-31, 2006, to honor Barry Simon's 60th birthday. It is not a proceedings volume in the usual sense since the emphasis of the majority of the contributions is on reviews of the state of the art of certain fields, with particular focus on recent developments and open problems. The bulk of the articles in this Festschrift are of this survey form, and a few review Simon's contributions to aparticular area. Part 1 contains surveys in the areas of Quantum Field Theory, Statistical Mechanics, Nonrelativistic Two-Body and $N$-Body Quantum Systems, Resonances, Quantum Mechanics with Electric and Magnetic Fields...
This book presents a systematic analysis of the Monge–Ampère equation, the linearized Monge–Ampère equation, and their applications, with emphasis on both interior and boundary theories. Starting from scratch, it gives an extensive survey of fundamental results, essential techniques, and intriguing phenomena in the solvability, geometry, and regularity of Monge–Ampère equations. It describes in depth diverse applications arising in geometry, fluid mechanics, meteorology, economics, and the calculus of variations. The modern treatment of boundary behaviors of solutions to Monge–Ampère equations, a very important topic of the theory, is thoroughly discussed. The book synthesizes ma...
This book presents the basics of quantum computing and quantum information theory. It emphasizes the mathematical aspects and the historical continuity of both algorithms and information theory when passing from classical to quantum settings. The book begins with several classical algorithms relevant for quantum computing and of interest in their own right. The postulates of quantum mechanics are then presented as a generalization of classical probability. Complete, rigorous, and self-contained treatments of the algorithms of Shor, Simon, and Grover are given. Passing to quantum information theory, the author presents it as a straightforward adaptation of Shannon's foundations to information...