Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Frames and Harmonic Analysis
  • Language: en
  • Pages: 358

Frames and Harmonic Analysis

This volume contains the proceedings of the AMS Special Sessions on Frames, Wavelets and Gabor Systems and Frames, Harmonic Analysis, and Operator Theory, held from April 16-17, 2016, at North Dakota State University in Fargo, North Dakota. The papers appearing in this volume cover frame theory and applications in three specific contexts: frame constructions and applications, Fourier and harmonic analysis, and wavelet theory.

Harmonic Analysis
  • Language: en
  • Pages: 281

Harmonic Analysis

There is a recent and increasing interest in harmonic analysis of non-smooth geometries. Real-world examples where these types of geometry appear include large computer networks, relationships in datasets, and fractal structures such as those found in crystalline substances, light scattering, and other natural phenomena where dynamical systems are present. Notions of harmonic analysis focus on transforms and expansions and involve dual variables. In this book on smooth and non-smooth harmonic analysis, the notion of dual variables will be adapted to fractals. In addition to harmonic analysis via Fourier duality, the author also covers multiresolution wavelet approaches as well as a third tool, namely, L2 spaces derived from appropriate Gaussian processes. The book is based on a series of ten lectures delivered in June 2018 at a CBMS conference held at Iowa State University.

Wavelets and Multiscale Analysis
  • Language: en
  • Pages: 345

Wavelets and Multiscale Analysis

Since its emergence as an important research area in the early 1980s, the topic of wavelets has undergone tremendous development on both theoretical and applied fronts. Myriad research and survey papers and monographs have been published on the subject, documenting different areas of applications such as sound and image processing, denoising, data compression, tomography, and medical imaging. The study of wavelets remains a very active field of research, and many of its central techniques and ideas have evolved into new and promising research areas. This volume, a collection of invited contributions developed from talks at an international conference on wavelets, is divided into three parts:...

Operator Methods in Wavelets, Tilings, and Frames
  • Language: en
  • Pages: 192

Operator Methods in Wavelets, Tilings, and Frames

This volume contains the proceedings of the AMS Special Session on Harmonic Analysis of Frames, Wavelets, and Tilings, held April 13-14, 2013, in Boulder, Colorado. Frames were first introduced by Duffin and Schaeffer in 1952 in the context of nonharmonic Fourier series but have enjoyed widespread interest in recent years, particularly as a unifying concept. Indeed, mathematicians with backgrounds as diverse as classical and modern harmonic analysis, Banach space theory, operator algebras, and complex analysis have recently worked in frame theory. Frame theory appears in the context of wavelets, spectra and tilings, sampling theory, and more. The papers in this volume touch on a wide variety...

Harmonic Analysis and Applications
  • Language: en
  • Pages: 390

Harmonic Analysis and Applications

This self-contained volume in honor of John J. Benedetto covers a wide range of topics in harmonic analysis and related areas. These include weighted-norm inequalities, frame theory, wavelet theory, time-frequency analysis, and sampling theory. The chapters are clustered by topic to provide authoritative expositions that will be of lasting interest. The original papers collected are written by prominent researchers and professionals in the field. The book pays tribute to John J. Benedetto’s achievements and expresses an appreciation for the mathematical and personal inspiration he has given to so many students, co-authors, and colleagues.

Recent Trends in Partial Differential Equations
  • Language: en
  • Pages: 136

Recent Trends in Partial Differential Equations

This volume contains the research and expository articles for the courses and talks given at the UIMP-RSME Lluis A. Santalo Summer School, Recent Trends in Partial Differential Equations. The goal of the Summer School was to present some of the many advances that are currently taking place in the interaction between nonlinear partial differential equations and their applications to other scientific disciplines. Oriented to young post-docs and advanced doctoral students, the courses dealt with topics of current interest. Some of the tools presented are quite powerful and sophisticated. These new methods are presented in an expository manner or applied to a particular example to demonstrate the main ideas of the method and to serve as a handy introduction to further study. Young researchers in partial differential equations and colleagues from neighboring fields will find these notes a good addition to their libraries. This is a joint publication of the Real Sociedad Matematica Espanola and the American Mathematical Society.

Stable Homotopy over the Steenrod Algebra
  • Language: en
  • Pages: 193

Stable Homotopy over the Steenrod Algebra

This title applys the tools of stable homotopy theory to the study of modules over the mod $p$ Steenrod algebra $A DEGREES{*}$. More precisely, let $A$ be the dual of $A DEGREES{*}$; then we study the category $\mathsf{stable}(A)$ of unbounded cochain complexes of injective comodules over $A$, in which the morphisms are cochain homotopy classes of maps. This category is triangulated. Indeed, it is a stable homotopy category, so we can use Brown representability, Bousfield localization, Brown-Comenetz duality, and other homotopy-theoretic tools to study it. One focus of attention is the analogue of the stable homotopy groups of spheres, which in this setting is the cohomology of $A$, $\mathrm{Ext}_A DEGREES{**}(\mathbf{F}_p, \mathbf{F}_p)$. This title also has nilpotence theorems, periodicity theorems, a convergent chromatic tower, and a nu

Advances in Gabor Analysis
  • Language: en
  • Pages: 369

Advances in Gabor Analysis

The Applied and Numerical Harmonic Analysis (ANHA) book series aims to provide the engineering, mathematical, and scientific communities with significant developments in harmonic analysis, ranging from abstract har monic analysis to basic applications. The title of the series reflects the im portance of applications and numerical implementation, but richness and relevance of applications and implementation depend fundamentally on the structure and depth of theoretical underpinnings. Thus, from our point of view, the interleaving of theory and applications and their creative symbi otic evolution is axiomatic. Harmonic analysis is a wellspring of ideas and applicability that has flour ished, d...

A Geometric Theory for Hypergraph Matching
  • Language: en
  • Pages: 108

A Geometric Theory for Hypergraph Matching

The authors develop a theory for the existence of perfect matchings in hypergraphs under quite general conditions. Informally speaking, the obstructions to perfect matchings are geometric, and are of two distinct types: `space barriers' from convex geometry, and `divisibility barriers' from arithmetic lattice-based constructions. To formulate precise results, they introduce the setting of simplicial complexes with minimum degree sequences, which is a generalisation of the usual minimum degree condition. They determine the essentially best possible minimum degree sequence for finding an almost perfect matching. Furthermore, their main result establishes the stability property: under the same ...

The Functional and Harmonic Analysis of Wavelets and Frames
  • Language: en
  • Pages: 320

The Functional and Harmonic Analysis of Wavelets and Frames

Over the past decade, wavelets and frames have emerged as increasingly powerful tools of analysis on $n$-dimension Euclidean space. Both wavelets and frames were studied initially by using classical Fourier analysis. However, in recent years more abstract tools have been introduced, for example, from operator theory, abstract harmonic analysis, von Neumann algebras, etc. The editors of this volume organized a Special Session on the functional and harmonic analysis of wavelets at the San Antonio (TX) Joint Mathematics Meetings. The goal of the session was to focus research attention on these newly-introduced tools and to share the organizers' view that this modern application holds the promise of providing some deeper understanding and fascinating new structures in pure functional analysis. This volume presents the fruitful results of the lively discussions that took place at the conference