You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Generally, books on mathematical statistics are restricted to the case of independent identically distributed random variables. In this book however, both this case AND the case of dependent variables, i.e. statistics for discrete and continuous time processes, are studied. This second case is very important for today’s practitioners. Mathematical Statistics and Stochastic Processes is based on decision theory and asymptotic statistics and contains up-to-date information on the relevant topics of theory of probability, estimation, confidence intervals, non-parametric statistics and robustness, second-order processes in discrete and continuous time and diffusion processes, statistics for discrete and continuous time processes, statistical prediction, and complements in probability. This book is aimed at students studying courses on probability with an emphasis on measure theory and for all practitioners who apply and use statistics and probability on a daily basis.
This book offers a predominantly theoretical coverage of statistical prediction, with some potential applications discussed, when data and/ or parameters belong to a large or infinite dimensional space. It develops the theory of statistical prediction, non-parametric estimation by adaptive projection – with applications to tests of fit and prediction, and theory of linear processes in function spaces with applications to prediction of continuous time processes. This work is in the Wiley-Dunod Series co-published between Dunod (www.dunod.com) and John Wiley and Sons, Ltd.
The goal of this thesis is to treat the temporal tail dependence and the cross-sectional tail dependence of heavy tailed functional time series. Functional time series are aimed at modelling spatio-temporal phenomena; for instance rain, temperature, pollution on a given geographical area, with temporally dependent observations. Heavy tails mean that the series can exhibit much higher spikes than with Gaussian distributions for instance. In such cases, second moments cannot be assumed to exist, violating the basic assumption in standard functional data analysis based on the sequence of autocovariance operators. As for random variables, regular variation provides the mathematical backbone for ...
The main subject of this book is the estimation and forecasting of continuous time processes. It leads to a development of the theory of linear processes in function spaces. Mathematical tools are presented, as well as autoregressive processes in Hilbert and Banach spaces and general linear processes and statistical prediction. Implementation and numerical applications are also covered. The book assumes knowledge of classical probability theory and statistics.
The past several years have seen the creation and extension of a very conclusive theory of statistics and probability. Many of the research workers who have been concerned with both probability and statistics felt the need for meetings that provide an opportunity for personal con tacts among scholars whose fields of specialization cover broad spectra in both statistics and probability: to discuss major open problems and new solutions, and to provide encouragement for further research through the lectures of carefully selected scholars, moreover to introduce to younger colleagues the latest research techniques and thus to stimulate their interest in research. To meet these goals, the series o...
This text is an Elementary Introduction to Stochastic Processes in discrete and continuous time with an initiation of the statistical inference. The material is standard and classical for a first course in Stochastic Processes at the senior/graduate level (lessons 1-12). To provide students with a view of statistics of stochastic processes, three lessons (13-15) were added. These lessons can be either optional or serve as an introduction to statistical inference with dependent observations. Several points of this text need to be elaborated, (1) The pedagogy is somewhat obvious. Since this text is designed for a one semester course, each lesson can be covered in one week or so. Having in mind...
An increasing number of statistical problems and methods involve infinite-dimensional aspects. This is due to the progress of technologies which allow us to store more and more information while modern instruments are able to collect data much more effectively due to their increasingly sophisticated design. This evolution directly concerns statisticians, who have to propose new methodologies while taking into account such high-dimensional data (e.g. continuous processes, functional data, etc.). The numerous applications (micro-arrays, paleo- ecological data, radar waveforms, spectrometric curves, speech recognition, continuous time series, 3-D images, etc.) in various fields (biology, econometrics, environmetrics, the food industry, medical sciences, paper industry, etc.) make researching this statistical topic very worthwhile. This book gathers important contributions on the functional and operatorial statistics fields.
This Festschrift in honour of Paul Deheuvels’ 65th birthday compiles recent research results in the area between mathematical statistics and probability theory with a special emphasis on limit theorems. The book brings together contributions from invited international experts to provide an up-to-date survey of the field. Written in textbook style, this collection of original material addresses researchers, PhD and advanced Master students with a solid grasp of mathematical statistics and probability theory.
This book presents a unique collection of contributions on modern topics in statistics and econometrics, written by leading experts in the respective disciplines and their intersections. It addresses nonparametric statistics and econometrics, quantiles and expectiles, and advanced methods for complex data, including spatial and compositional data, as well as tools for empirical studies in economics and the social sciences. The book was written in honor of Christine Thomas-Agnan on the occasion of her 65th birthday. Given its scope, it will appeal to researchers and PhD students in statistics and econometrics alike who are interested in the latest developments in their field.