You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Many problems of stability in the theory of dynamical systems face the difficulty of small divisors. The most famous example is probably given by Kolmogorov-Arnold-Moser theory in the context of Hamiltonian systems, with many applications to physics and astronomy. Other natural small divisor problems arise considering circle diffeomorphisms or quasiperiodic Schroedinger operators. In this volume Hakan Eliasson, Sergei Kuksin and Jean-Christophe Yoccoz illustrate the most recent developments of this theory both in finite and infinite dimension. A list of open problems (including some problems contributed by John Mather and Michel Herman) has been included.
The School of Mathematics is a masterpiece of the early 1930s by Gio Ponti, who is today regarded as a master of Italian Modernism. Although World War II bombings shattered the coloured stained-glass window that once adorned the balanced and harmonious white travertine façade, the building remains a striking and significant piece of architecture. Although it underwent a series of transformations over the years before its historical and artistic relevance was recognised, it can still be appreciated and admired for its magnificent expressivity. Its uniqueness derives from its complexity, such as is often found in Italian monuments of all ages: a rare synthesis of urban design, architecture, a...
The study of complex, interconnected mechanical systems with rigid and flexible articulated components is of growing interest to both engineers and mathematicians. Recent work in this area reveals a rich geometry underlying the mathematical models used in this context. In particular, Lie groups of symmetries, reduction, and Poisson structures play a significant role in explicating the qualitative properties of multibody systems. In engineering applications, it is important to exploit the special structures of mechanical systems. For example, certain mechanical problems involving control of interconnected rigid bodies can be formulated as Lie-Poisson systems. The dynamics and control of robot...
We prove that the solutions of a cohomological equation of complex dimension one and in the analytic category have a monogenic dependence on the parameter. This cohomological equation is the standard linearized conjugacy equation for germs of holomorphic maps in a neighborhood of a fixed point.
Is the solar system stable? Is there a unifying 'economy' principle in mechanics? How can a pointmass be described as a 'wave'? This book offers students an understanding of the most relevant and far reaching results of the theory of Analytical Mechanics, including plenty of examples, exercises, and solved problems.
This text (together with a forthcoming second volume) presents most of the courses and seminars delivered at the meeting entitled "Frontiers in number theory, physics and geometry" which took place at the Centre de Physique des Houches in the French Alps, March 9-12, 2003.
This second half of Volume 1 of this Handbook follows Volume 1A, which was published in 2002. The contents of these two tightly integrated parts taken together come close to a realization of the program formulated in the introductory survey "Principal Structures of Volume 1A.The present volume contains surveys on subjects in four areas of dynamical systems: Hyperbolic dynamics, parabolic dynamics, ergodic theory and infinite-dimensional dynamical systems (partial differential equations).. Written by experts in the field.. The coverage of ergodic theory in these two parts of Volume 1 is considerably more broad and thorough than that provided in other existing sources. . The final cluster of chapters discusses partial differential equations from the point of view of dynamical systems.
None
This volume contains the proceedings of the Conference on Dynamical Systems, Ergodic Theory, and Probability, which was dedicated to the memory of Nikolai Chernov, held from May 18–20, 2015, at the University of Alabama at Birmingham, Birmingham, Alabama. The book is devoted to recent advances in the theory of chaotic and weakly chaotic dynamical systems and its applications to statistical mechanics. The papers present new original results as well as comprehensive surveys.