You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This workshop gathered experts in plasma physics, nonlinear phenomena and mathematics. It aimed at enabling theoreticians and experimentalists in plasma turbulence to relate electromagnetic fluctuations to transport processes. It may lead to the development of new diagnostics and new methods for signal processing.
This volume contains edited versions of 11 contributions given by main speakers at the NATO Advanced Study Institute on lReal and Complex Dynamical Systems in Hiller0d, Denmark, June 20th - July 2nd, 1993. The vision of the institute was to illustrate the interplay between two important fields of Mathematics: Real Dynamical Systems and Complex Dynamical Systems. The interaction between these two fields has been growing over the years. Problems in Real Dynamical Systems have recently been solved using complex tools in the real or by extension to the complex. In return, problems in Complex Dynamical Systems have been settled using results from Real Dynamical Systems. The programme of the institute was to examine the state of the art of central parts of both Real and Complex Dynamical Systems, to reinforce contact between the two aspects of the theory and to make recent progress in each accessible to a larger group of mathematicians.
Noise is ubiquitous in nature and in man-made systems. Noise in oscillators perturbs high-technology devices such as time standards or digital communication systems. The understanding of its algebraic structure is thus of vital importance. The book addresses both the measurement methods and the understanding of quantum, 1/f and phase noise in systems such as electronic amplifiers, oscillators and receivers, trapped ions, cosmic ray showers and in commercial applications. A strong link between 1/f noise and number theory is emphasized. The twenty papers in the book are comprehensive versions of talks presented at a school in Chapelle des Bois (Jura, France) held from April 6 to 10, 1999, by engineers, physisicts and mathematicians.
This superb and self-contained work is an introductory presentation of basic ideas, structures, and results of differential and integral calculus for functions of several variables. The wide range of topics covered include the differential calculus of several variables, including differential calculus of Banach spaces, the relevant results of Lebesgue integration theory, and systems and stability of ordinary differential equations. An appendix highlights important mathematicians and other scientists whose contributions have made a great impact on the development of theories in analysis. This text motivates the study of the analysis of several variables with examples, observations, exercises, and illustrations. It may be used in the classroom setting or for self-study by advanced undergraduate and graduate students and as a valuable reference for researchers in mathematics, physics, and engineering.
This volume contains a collection of survey and research articles from the special program and international conference on Dynamics and Numbers held at the Max-Planck Institute for Mathematics in Bonn, Germany in 2014. The papers reflect the great diversity and depth of the interaction between number theory and dynamical systems and geometry in particular. Topics covered in this volume include symbolic dynamics, Bratelli diagrams, geometry of laminations, entropy, Nielsen theory, recurrence, topology of the moduli space of interval maps, and specification properties.
This volume is a collection of notes from lectures given at the 2008 Clay Mathematics Institute Summer School, held in Zürich, Switzerland. The lectures were designed for graduate students and mathematicians within five years of the Ph.D., and the main focus of the program was on recent progress in the theory of evolution equations. Such equations lie at the heart of many areas of mathematical physics and arise not only in situations with a manifest time evolution (such as linear and nonlinear wave and Schrödinger equations) but also in the high energy or semi-classical limits of elliptic problems. The three main courses focused primarily on microlocal analysis and spectral and scattering ...
Dynamics on the Riemann Sphere presents a collection of original research articles by leading experts in the area of holomorphic dynamics. These papers arose from the symposium Dynamics in the Complex Plane, held on the occasion of the 60th birthday of Bodil Branner. Topics covered range from Lattes maps to cubic polynomials over rational maps with Sierpinsky Carpets and Gaskets as Julia sets, as well as rational and entire transcendental maps with Herman rings.
Ergodic theory is hard to study because it is based on measure theory, which is a technically difficult subject to master for ordinary students, especially for physics majors. Many of the examples are introduced from a different perspective than in other books and theoretical ideas can be gradually absorbed while doing computer experiments. Theoretically less prepared students can appreciate the deep theorems by doing various simulations. The computer experiments are simple but they have close ties with theoretical implications. Even the researchers in the field can benefit by checking their conjectures, which might have been regarded as unrealistic to be programmed easily, against numerical output using some of the ideas in the book. One last remark: The last chapter explains the relation between entropy and data compression, which belongs to information theory and not to ergodic theory. It will help students to gain an understanding of the digital technology that has shaped the modern information society.
This book is devoted to studying algorithms for the solution of a class of quadratic matrix and vector equations. These equations appear, in different forms, in several practical applications, especially in applied probability and control theory. The equations are first presented using a novel unifying approach; then, specific numerical methods are presented for the cases most relevant for applications, and new algorithms and theoretical results developed by the author are presented. The book focuses on “matrix multiplication-rich” iterations such as cyclic reduction and the structured doubling algorithm (SDA) and contains a variety of new research results which, as of today, are only available in articles or preprints.
This volume resulted from the conference A Celebration of Algebraic Geometry, which was held at Harvard University from August 25-28, 2011, in honor of Joe Harris' 60th birthday. Harris is famous around the world for his lively textbooks and enthusiastic teaching, as well as for his seminal research contributions. The articles are written in this spirit: clear, original, engaging, enlivened by examples, and accessible to young mathematicians. The articles in this volume focus on the moduli space of curves and more general varieties, commutative algebra, invariant theory, enumerative geometry both classical and modern, rationally connected and Fano varieties, Hodge theory and abelian varieties, and Calabi-Yau and hyperkähler manifolds. Taken together, they present a comprehensive view of the long frontier of current knowledge in algebraic geometry. Titles in this series are co-published with the Clay Mathematics Institute (Cambridge, MA).