You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
A 1999 biography of one of Germany's most important scientists (active 1890-1933) and an historical examination of physics and chemistry.
Presents a history of physics, examining the theories and experimental practices of the science.
Ever since 1911, the Solvay Conferences have shaped modern physics. The 23rd edition, chaired by 2004 Nobel Laureate David Gross, did not break with that tradition. It gathered most of the leading figures working on the central problem of reconciling Einstein's theory of gravity with quantum mechanics.These proceedings give a broad overview with unique insight into the most fundamental issues raised by this challenge for 21st century physics, by distinguished renowned scientists. The contributions cover: the status of quantum mechanics, spacetime singularities and breakdown of classical space and time, mathematical structures underlying the most promising attempts under current development, spacetime as an emergent concept, as well as cosmology and the cosmological constant puzzle. A historical overview of the Solvay conferences by historian of sciences Peter Galison opens the volume.In the Solvay tradition, the volume also includes the discussions among the participants — many of which were quite lively and illustrate dramatically divergent points of view — carefully edited and reproduced in full.
The author looks at the prospects for a transition from natural gas to low carbon gas, which could take several decades, and at how this will depend on the evolution of the fossil fuel industry. She investigates the technologies and energy systems for making the best use of renewable gas resources.
In Cathedrals of Science, Patrick Coffey describes how chemistry got its modern footing-how thirteen brilliant men and one woman struggled with the laws of the universe and with each other. They wanted to discover how the world worked, but they also wanted credit for making those discoveries, and their personalities often affected how that credit was assigned. Gilbert Lewis, for example, could be reclusive and resentful, and his enmity with Walther Nernst may have cost him the Nobel Prize; Irving Langmuir, gregarious and charming, "rediscovered" Lewis's theory of the chemical bond and received much of the credit for it. Langmuir's personality smoothed his path to the Nobel Prize over Lewis. ...
This volume, occasioned by the centenary of the Fritz Haber Institute, formerly the Institute for Physical Chemistry and Electrochemistry, covers the institute's scientific and institutional history from its founding until the present. The institute was among the earliest established by the Kaiser Wilhelm Society, and its inauguration was one of the first steps in the development of Berlin-Dahlem into a center for scientific research. Its establishment was made possible by an endowment from Leopold Koppel, granted on the condition that Fritz Haber, well-known for his discovery of a method to synthesize ammonia from its elements, be made its director. The history of the institute has largely ...
A principal aim of this first biography of Robert Le Rossignol, engineer of the Haber process, is to bring new evidence to the attention of the scientific community allowing a re-assessment of the origins of the 'Haber' process. However, the scope of the book is much wider and goes beyond the discovery of 'fixation' to account for a life distinct from Haber, one full of remarkable science, cruel circumstance, personal tragedy and amazing benevolence, the latter made possible by Haber’s generous financial arrangement with Le Rossignol regarding his royalties from the BASF.
The untold story of Albert Einstein's role as the father of quantum theory Einstein and the Quantum reveals for the first time the full significance of Albert Einstein's contributions to quantum theory. Einstein famously rejected quantum mechanics, observing that God does not play dice. But, in fact, he thought more about the nature of atoms, molecules, and the emission and absorption of light—the core of what we now know as quantum theory—than he did about relativity. A compelling blend of physics, biography, and the history of science, Einstein and the Quantum shares the untold story of how Einstein—not Max Planck or Niels Bohr—was the driving force behind early quantum theory. It ...
This four-volume work represents the most comprehensive documentation and study of the creation of general relativity. Einstein’s 1912 Zurich notebook is published for the first time in facsimile and transcript and commented on by today’s major historians of science. Additional sources from Einstein and others, who from the late 19th to the early 20th century contributed to this monumental development, are presented here in translation for the first time. The volumes offer detailed commentaries and analyses of these sources that are based on a close reading of these documents supplemented by interpretations by the leading historians of relativity.
Scientists and other keen observers of the natural world sometimes make or write a statement pertaining to scientific activity that is destined to live on beyond the brief period of time for which it was intended. This book serves as a collection of these statements from great philosophers and thought–influencers of science, past and present. It allows the reader quickly to find relevant quotations or citations. Organized thematically and indexed alphabetically by author, this work makes readily available an unprecedented collection of approximately 18,000 quotations related to a broad range of scientific topics.