Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Symplectic Geometry
  • Language: en
  • Pages: 246

Symplectic Geometry

This volume is based on lectures given at a workshop and conference on symplectic geometry at the University of Warwick in August 1990.

$J$-holomorphic Curves and Symplectic Topology
  • Language: en
  • Pages: 744

$J$-holomorphic Curves and Symplectic Topology

The theory of $J$-holomorphic curves has been of great importance since its introduction by Gromov in 1985. In mathematics, its applications include many key results in symplectic topology. It was also one of the main inspirations for the creation of Floer homology. In mathematical physics, it provides a natural context in which to define Gromov–Witten invariants and quantum cohomology, two important ingredients of the mirror symmetry conjecture. The main goal of this book is to establish the fundamental theorems of the subject in full and rigorous detail. In particular, the book contains complete proofs of Gromov's compactness theorem for spheres, of the gluing theorem for spheres, and of...

Functional Analysis
  • Language: en
  • Pages: 482

Functional Analysis

It begins in Chapter 1 with an introduction to the necessary foundations, including the Arzelà–Ascoli theorem, elementary Hilbert space theory, and the Baire Category Theorem. Chapter 2 develops the three fundamental principles of functional analysis (uniform boundedness, open mapping theorem, Hahn–Banach theorem) and discusses reflexive spaces and the James space. Chapter 3 introduces the weak and weak topologies and includes the theorems of Banach–Alaoglu, Banach–Dieudonné, Eberlein–Šmulyan, Kre&ibreve;n–Milman, as well as an introduction to topological vector spaces and applications to ergodic theory. Chapter 4 is devoted to Fredholm theory. It includes an introduction to t...

Introduction to Differential Geometry
  • Language: en
  • Pages: 426

Introduction to Differential Geometry

This textbook is suitable for a one semester lecture course on differential geometry for students of mathematics or STEM disciplines with a working knowledge of analysis, linear algebra, complex analysis, and point set topology. The book treats the subject both from an extrinsic and an intrinsic view point. The first chapters give a historical overview of the field and contain an introduction to basic concepts such as manifolds and smooth maps, vector fields and flows, and Lie groups, leading up to the theorem of Frobenius. Subsequent chapters deal with the Levi-Civita connection, geodesics, the Riemann curvature tensor, a proof of the Cartan-Ambrose-Hicks theorem, as well as applications to...

Introduction to Symplectic Topology
  • Language: en
  • Pages: 637

Introduction to Symplectic Topology

Over the last number of years powerful new methods in analysis and topology have led to the development of the modern global theory of symplectic topology, including several striking and important results. This new third edition of a classic book in the feild includes updates and new material to bring the material right up-to-date.

The Moment-Weight Inequality and the Hilbert–Mumford Criterion
  • Language: en
  • Pages: 193

The Moment-Weight Inequality and the Hilbert–Mumford Criterion

This book provides an introduction to geometric invariant theory from a differential geometric viewpoint. It is inspired by certain infinite-dimensional analogues of geometric invariant theory that arise naturally in several different areas of geometry. The central ingredients are the moment-weight inequality relating the Mumford numerical invariants to the norm of the moment map, the negative gradient flow of the moment map squared, and the Kempf--Ness function. The exposition is essentially self-contained, except for an appeal to the Lojasiewicz gradient inequality. A broad variety of examples illustrate the theory, and five appendices cover essential topics that go beyond the basic concepts of differential geometry. The comprehensive bibliography will be a valuable resource for researchers. The book is addressed to graduate students and researchers interested in geometric invariant theory and related subjects. It will be easily accessible to readers with a basic understanding of differential geometry and does not require any knowledge of algebraic geometry.

$J$-Holomorphic Curves and Quantum Cohomology
  • Language: en
  • Pages: 220

$J$-Holomorphic Curves and Quantum Cohomology

J -holomorphic curves revolutionized the study of symplectic geometry when Gromov first introduced them in 1985. Through quantum cohomology, these curves are now linked to many of the most exciting new ideas in mathematical physics. This book presents the first coherent and full account of the theory of J -holomorphic curves, the details of which are presently scattered in various research papers. The first half of the book is an expository account of the field, explaining the main technical aspects. McDuff and Salamon give complete proofs of Gromov's compactness theorem for spheres and of the existence of the Gromov-Witten invariants. The second half of the book focuses on the definition of quantum cohomology. The authors establish that the quantum multiplication exists and is associative on appropriate manifolds. They then describe the Givental-Kim calculation of the quantum cohomology of flag manifolds, leading to quantum Chern classes and Witten's calculation for Grassmanians, which relates to the Verlinde algebra. The Dubrovin connection, Gromov-Witten potential on quantum cohomology, and curve counting formulas are also discussed.

Symplectic Geometry and Topology
  • Language: en
  • Pages: 452

Symplectic Geometry and Topology

Symplectic geometry has its origins as a geometric language for classical mechanics. But it has recently exploded into an independent field interconnected with many other areas of mathematics and physics. The goal of the IAS/Park City Mathematics Institute Graduate Summer School on Symplectic Geometry and Topology was to give an intensive introduction to these exciting areas of current research. Included in this proceedings are lecture notes from the following courses: Introductionto Symplectic Topology by D. McDuff; Holomorphic Curves and Dynamics in Dimension Three by H. Hofer; An Introduction to the Seiberg-Witten Equations on Symplectic Manifolds by C. Taubes; Lectures on Floer Homology ...

Mathematical Systems Theory I
  • Language: en
  • Pages: 818

Mathematical Systems Theory I

This book presents the mathematical foundations of systems theory in a self-contained, comprehensive, detailed and mathematically rigorous way. It is devoted to the analysis of dynamical systems and combines features of a detailed introductory textbook with that of a reference source. The book contains many examples and figures illustrating the text which help to bring out the intuitive ideas behind the mathematical constructions.

Introduction to Differential Topology
  • Language: en
  • Pages: 176

Introduction to Differential Topology

This book is intended as an elementary introduction to differential manifolds. The authors concentrate on the intuitive geometric aspects and explain not only the basic properties but also teach how to do the basic geometrical constructions. An integral part of the work are the many diagrams which illustrate the proofs. The text is liberally supplied with exercises and will be welcomed by students with some basic knowledge of analysis and topology.