You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book constitutes the thoroughly refereed post-conference proceedings of the Third International ICST Conference on Ambient Media and Systems, AMBI-SYS 2013, held in Athens, Greece, in March 2013. The 12 revised full papers presented were carefully reviewed and selected from various submissions. The papers focus on emerging technologies, services and solutions for new, human-centric intelligent ambient environments.
The natural, biological, medical, and related sciences would not be what they are today without the microscope. After the introduction of the optical microscope, a second breakthrough in morphostructural surface analysis occurred in the 1940s with the development of the scanning electron microscope (SEM), which, instead of light (i. e. , photons) and glass lenses, uses electrons and electromagnetic lenses (magnetic coils). Optical and scanning (or transmission) electron microscopes are called “far-field microscopes” because of the long distance between the sample and the point at which the image is obtained in comparison with the wavelengths of the photons or electrons involved. In this ...
This book provides an up-to-date overview of the architecture and biosynthesis of bacterial and archaeal cell walls, highlighting the evolution-based similarities in, but also the intriguing differences between the cell walls of Gram-negative bacteria, the Firmicutes and Actinobacteria, and the Archaea. The recent major advances in this field, which have brought to light many new structural and functional details, are presented and discussed. Over the past five years, a number of novel systems, e.g. for lipid, porin and lipopolysaccharide biosynthesis have been described. In addition, new structural achievements with periplasmic chaperones have been made, all of which have revealed amazing details on how bacterial cell walls are synthesized. These findings provide an essential basis for future research, e.g. the development of new antibiotics. The book’s content is the logical continuation of Volume 84 of SCBI (on Prokaryotic Cytoskeletons), and sets the stage for upcoming volumes on Protein Complexes.
This volume of proceedings consists of the papers presented during the 9th International Workshop on Mathematical Methods in Scattering Theory and Biomedical Engineering, held in Patras, Greece, on 9ndash;11 October 2009. The book contains papers on scattering theory and biomedical engineering - two rapidly evolving fields which have a considerable impact on today's research. All the papers are state-of-the-art, have been carefully reviewed before publication and the authors are well-known in the scientific community. in addition, some papers focus more on applied mathematics, which provides a solid ground for development and innovative research in scattering and biomedical engineering.
This volume deals with scattering theory, applied mathematics, modeling and biomedical engineering. Most of the papers describe mathematical methods, numerical solutions and models for well-known problems in those areas.The proceedings have been selected for coverage in: ? Index to Scientific & Technical Proceedings (ISTP CDROM version / ISI Proceedings)
This Proceedings presents the short papers, posters and abstracts of full papers accepted to the 3rd International Conference on Decision Support System Technology, ICDSST 2017, held in Namur, Belgium, during May 29th to 31st, 2017. This event had a main theme Data, Information and Knowledge Visualisation in Decision Making. This event is organized by the Euro Working Group on Decision Support Systems (EWG-DSS) in collaboration with the University of Namur Belgium, the EFFaTA Research Team of the University of Namur and the Université libre de Bruxelles, Belgium.
This volume presents the proceedings of the International Conference on Medical and Biological Engineering held from 16 to 18 March 2017 in Sarajevo, Bosnia and Herzegovina. Focusing on the theme of ‘Pursuing innovation. Shaping the future’, it highlights the latest advancements in Biomedical Engineering and also presents the latest findings, innovative solutions and emerging challenges in this field. Topics include: - Biomedical Signal Processing - Biomedical Imaging and Image Processing - Biosensors and Bioinstrumentation - Bio-Micro/Nano Technologies - Biomaterials - Biomechanics, Robotics and Minimally Invasive Surgery - Cardiovascular, Respiratory and Endocrine Systems Engineering - Neural and Rehabilitation Engineering - Molecular, Cellular and Tissue Engineering - Bioinformatics and Computational Biology - Clinical Engineering and Health Technology Assessment - Health Informatics, E-Health and Telemedicine - Biomedical Engineering Education - Pharmaceutical Engineering
This book presents an overview of a variety of contemporary statistical, mathematical and computer science techniques which are used to further the knowledge in the medical domain. The authors focus on applying data mining to the medical domain, including mining the sets of clinical data typically found in patient’s medical records, image mining, medical mining, data mining and machine learning applied to generic genomic data and more. This work also introduces modeling behavior of cancer cells, multi-scale computational models and simulations of blood flow through vessels by using patient-specific models. The authors cover different imaging techniques used to generate patient-specific models. This is used in computational fluid dynamics software to analyze fluid flow. Case studies are provided at the end of each chapter. Professionals and researchers with quantitative backgrounds will find Computational Medicine in Data Mining and Modeling useful as a reference. Advanced-level students studying computer science, mathematics, statistics and biomedicine will also find this book valuable as a reference or secondary text book.
An enormous amount of new knowledge on the molecular basis of various biological phenomena has emerged in the rapidly expanding field of bioscience. Since the frontiers in scientific research are difficult to define‚ the creation of new knowledge depends not only on new methods and concepts but also on interaction with other fields of research. The principles and methods of biophysics should be a rational language for discussion not only between scientists of the different disciplines of natural sciences‚ such as physics‚ mathematics‚ biochemistry‚ molecular biology and biotechnology‚ but also for medicine and social sciences as well. This is the general philosophy behind the org...
Over the past three decades, the exploding number of new technologies and applications introduced in medical practice, often powered by advances in biosignal processing and biomedical imaging, created an amazing account of new possibilities for diagnosis and therapy, but also raised major questions of appropriateness and safety. The accelerated development in this field, alongside with the promotion of electronic health care solutions, is often on the basis of an uncontrolled diffusion and use of medical technology. The emergence and use of medical devices is multiplied rapidly and today there exist more than one million different products available on the world market. Despite the fact that the rising cost of health care, partly resulting from the new emerging technological applications, forms the most serious and urgent problem for many governments today, another important concern is that of patient safety and user protection, issues that should never be compromised and expelled from the Biomedical Engineering research practice agenda.