You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Mathematical Theory of Probability and Statistics focuses on the contributions and influence of Richard von Mises on the processes, methodologies, and approaches involved in the mathematical theory of probability and statistics. The publication first elaborates on fundamentals, general label space, and basic properties of distributions. Discussions focus on Gaussian distribution, Poisson distribution, mean value variance and other moments, non-countable label space, basic assumptions, operations, and distribution function. The text then ponders on examples of combined operations and summation of chance variables characteristic function. The book takes a look at the asymptotic distribution of...
The Theory of Probability is a major tool that can be used to explain and understand the various phenomena in different natural, physical and social sciences. This book provides a systematic exposition of the theory in a setting which contains a balanced mixture of the classical approach and the modern day axiomatic approach. After reviewing the basis of the theory, the book considers univariate distributions, bivariate normal distribution, multinomial distribution and convergence of random variables. Difficult ideas have been explained lucidly and have been augmented with explanatory notes, examples and exercises. The basic requirement for reading this book is simply a knowledge of mathematics at graduate level. This book tries to explain the difficult ideas in the axiomatic approach to the theory of probability in a clear and comprehensible manner. It includes several unusual distributions including the power series distribution that have been covered in great detail. Readers will find many worked-out examples and exercises with hints, which will make the book easily readable and engaging. The author is a former Professor of the Indian Statistical Institute, India.
This detailed introduction to distribution theory uses no measure theory, making it suitable for students in statistics and econometrics as well as for researchers who use statistical methods. Good backgrounds in calculus and linear algebra are important and a course in elementary mathematical analysis is useful, but not required. An appendix gives a detailed summary of the mathematical definitions and results that are used in the book. Topics covered range from the basic distribution and density functions, expectation, conditioning, characteristic functions, cumulants, convergence in distribution and the central limit theorem to more advanced concepts such as exchangeability, models with a group structure, asymptotic approximations to integrals, orthogonal polynomials and saddlepoint approximations. The emphasis is on topics useful in understanding statistical methodology; thus, parametric statistical models and the distribution theory associated with the normal distribution are covered comprehensively.
This book introduces the subject of probabilistic analysis to engineers and can be used as a reference in applying this technology.
This book Probability and Theoretical Distributions is an outcome of author s long teaching experience of the subject. This book present a thorough treatment of what is required for the students of B.A./B.Sc. of various Universities. It includes fundamental concepts illustrated examples and application to various problems. Contents: Probability and Expected Value, Theoretical Distributions.
Elements of Probability Theory focuses on the basic ideas and methods of the theory of probability. The book first discusses events and probabilities, including the classical meaning of probability, fundamental properties of probabilities, and the primary rule for the multiplication of probabilities. The text also touches on random variables and probability distributions. Topics include discrete and random variables; functions of random variables; and binomial distributions. The selection also discusses the numerical characteristics of probability distributions; limit theorems and estimates of the mean; and the law of large numbers. The text also describes linear correlation, including conditional expectations and their properties, coefficient of correlation, and best linear approximation to the regression function. The book presents tables that show the values of the normal probability integral, Poisson distribution, and values of the normal probability density. The text is a good source of data for readers and students interested in probability theory.
This book is a guide for you on probability theory. It is a good book for students and practitioners in fields such as finance, engineering, science, technology and others. The book guides on how to approach probability in the right way. Numerous examples have been given, both theoretical and mathematical with a high degree of accuracy. If you have wished to know how to model random and uncertain events, this is the right book for you. The author guides you on how to tackle probabilistic problems using various forms of probability distributions. Probabilities are normally combined using rules. The author has helped you understand how to apply these rules to model your problems. The author ha...
This classic introduction to probability theory for beginning graduate students covers laws of large numbers, central limit theorems, random walks, martingales, Markov chains, ergodic theorems, and Brownian motion. It is a comprehensive treatment concentrating on the results that are the most useful for applications. Its philosophy is that the best way to learn probability is to see it in action, so there are 200 examples and 450 problems. The fourth edition begins with a short chapter on measure theory to orient readers new to the subject.
Compactly written, but nevertheless very readable, appealing to intuition, this introduction to probability theory is an excellent textbook for a one-semester course for undergraduates in any direction that uses probabilistic ideas. Technical machinery is only introduced when necessary. The route is rigorous but does not use measure theory. The text is illustrated with many original and surprising examples and problems taken from classical applications like gambling, geometry or graph theory, as well as from applications in biology, medicine, social sciences, sports, and coding theory. Only first-year calculus is required.
Due to the rapidly increasing need for methods of data compression, quantization has become a flourishing field in signal and image processing and information theory. The same techniques are also used in statistics (cluster analysis), pattern recognition, and operations research (optimal location of service centers). The book gives the first mathematically rigorous account of the fundamental theory underlying these applications. The emphasis is on the asymptotics of quantization errors for absolutely continuous and special classes of singular probabilities (surface measures, self-similar measures) presenting some new results for the first time. Written for researchers and graduate students in probability theory the monograph is of potential interest to all people working in the disciplines mentioned above.