You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Analysis and Optimization of Sheet Metal Forming Processes comprehensively covers sheet metal forming, from choosing materials, tools and the forming method to optimising the entire process through finite element analysis and computer-aided engineering. Beginning with an introduction to sheet metal forming, the book provides a guide to the various techniques used within the industry. It provides a discussion of sheet metal properties relevant to forming processes, such as ductility, formability, and strength, and analyses how materials should be selected with factors including material properties, cost, and availability. Forming processes including shearing, bending, deep drawing, and stamping are also discussed, along with tools such as dies, punches, and moulds. Simulation and modelling are key to optimising the sheet metal forming process, including finite element analysis and computer-aided engineering. Other topics included are quality control, design, industry applications, and future trends. The book will be of interest to students and professionals working in the field of sheet metal and metal forming, materials science, mechanical engineering, and metallurgy.
All papers were peer-reviewed. In the industry, the laser is placed like a tool having shown its effectiveness from the point of view of the tasks execution speed, the accuracy and the quality of the obtained result. Beside, the plasmas obtained by laser, by discharge, or the dusty plasmas are now intensively studied both by theoretical and experimental approaches since their applications are very promising in many fields. The First International Conference on Laser and Plasma Applications in Materials Science (LAPAMS’08) organized by the Centre de Développement des Technologies Avancées (CDTA) of Algiers. Its objective was to present the state of the art, the trends, the fundamental asp...
SiGe HBTs is a hot topic within the microelectronics community because of its applications potential within integrated circuits operating at radio frequencies. Applications range from high speed optical networking to wireless communication devices. The addition of germanium to silicon technologies to form silicon germanium (SiGe) devices has created a revolution in the semiconductor industry. These transistors form the enabling devices in a wide range of products for wireless and wired communications. This book features: SiGe products include chip sets for wireless cellular handsets as well as WLAN and high-speed wired network applications Describes the physics and technology of SiGe HBTs, with coverage of Si and Ge bipolar transistors Written with the practising engineer in mind, this book explains the operating principles and applications of bipolar transistor technology. Essential reading for practising microelectronics engineers and researchers. Also, optical communications engineers and communication technology engineers. An ideal reference tool for masters level students in microelectronics and electronics engineering.
Selected, peer reviewed papers from the LAPAMS 2010, Algiers from 27th to 30th November 2010.
Along with more than 2100 integral equations and their solutions, this handbook outlines exact analytical methods for solving linear and nonlinear integral equations and provides an evaluation of approximate methods. Each section provides examples that show how methods can be applied to specific equations.
This is a comprehensive text describing the basic physics and technological applications of vacuum arcs. Part I describes basic physics of the vacuum arc, beginning with a brief tutorial review of plasma and electrical discharge physics, then describes the arc ignition process, cathode and anode spots which serve as the locus for plasma generation, and resultant interelectrode plasma. Part II describes the applications of the vacuum arc for depositing thin films and coatings, refining metals, switching high power, and as sources of intense electron, ion, plasma, and x-ray beams.
None
None
None
Book offers a comprehensive treatment of nonhybrid polymeric solar cells from the basic chemistry of donor and acceptor materials through device design, processing and manufacture. Written by a team of Europe-based experts, the text shows the steps and strategies of successfully moving from the science of solar cells to commercial device production. Chapters focus on technologies that lead to increased efficiencies, longer usable life and lower costs. Highlighted are ways to fabricate solar cells from a range of polymers and develop them into marketable commodities. Special consideration is given to solar cells as intellectual property.