You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
It is almost self-evident that surface and interface science, coupled with the electronic structure of bulk materials, playa fundamental role in the understanding of materials properties. If one is to have any hope of understanding such properties as catalysis, microelectronic devices and contacts, wear, lubrication, resistance to corrosion, ductility, creep, intragranular fracture, toughness and strength of steels, adhesion of protective oxide scales, and the mechanical properties of ceramics, one must address a rather complex problem involving a number of fundamental parameters: the atomic and electronic structure, the energy and chemistry of surface and interface regions, diffusion along ...
Photoemission is one of the principal techniques for the characterization and investigation of condensed matter systems. The field has experienced many developments in recent years, which may also be put down to important achievements in closely related areas. This timely and up-to-date handbook is written by experts in the field who provide the background needed by both experimentalists and theorists. It represents an interesting framework for showing the connection between theory and experiment by bringing together different concepts in the investigation of the properties of materials. The work addresses the geometric and electronic structure of solid surfaces and interfaces, theoretical methods for direct computation of spectra, experimental techniques for data acquisition, and physical models for direct data interpretation. It also includes such recent developments as full hemisphere acceptance in photoemission, two-electron photoemission, (e, 2e) electron diffraction, and photoelectron-electron/hole interaction.
The ability to understand and control the unique properties of interfaces has created an entirely new field of magnetism, with profound impact in technology and serving as the basis for a revolution in electronics. Our understanding of the physics of magnetic nanostructures has also advanced significantly. This rapid development has generated a need for a comprehensive treatment that can serve as an introduction to the field for those entering it from diverse fields, but which will also serve as a timely overview for those already working in this area. The four-volume work Ultra-Thin Magnetic Structures aims to fulfill this dual need. The original two volumes – now available once more – are An Introduction to the Electronic, Magnetic and Structural Properties (this volume) and "Measurement Techniques and Novel Magnetic Properties." Two new volumes, "Fundamentals of Nanomagnetism" and "Applications of Nanomagnetism," extend and complete this comprehensive work by presenting the foundations of spintronics.
Surface science has existed as a recognized discipline for more than 20 years. During this period, the subject has expanded in two important ways. On the one hand, the techniques available for studying surfaces, both experimental and theoretical, have grown in number and in sophistication. On the other hand, surface science has been applied to an increasing number of areas of technology, such as catalysis, semicon ductor processing, new materials development, corrosion prevention, adhesion and tribology. . There is, however, no sharp division between fundamental and applied surface science. New techniques can immediately be applied to technologically important problems. Improvements in under...
This timely text covers the theory and practice of surface and nanostructure determination by low-energy electron diffraction (LEED) and surface X-ray diffraction (SXRD): it is the first book on such quantitative structure analysis in over 30 years. It provides a detailed description of the theory, including cutting-edge developments and tested experimental methods. The focus is on quantitative techniques, while the qualitative interpretation of the LEED pattern without quantitative I(V) analysis is also included. Topics covered include the future study of nanoparticles, quasicrystals, thermal parameters, disorder and modulations of surfaces with LEED, with introductory sections enabling the non-specialist to follow all the concepts and applications discussed. With numerous colour figures throughout, this text is ideal for undergraduate and graduate students and researchers, whether experimentalists or theorists, in the fields of surface science, nanoscience and related technologies. It can serve as a textbook for graduate-level courses of one or two semesters.
During the past fifteen years there has been a dramatic increase in the number of different surfaces whose structures have been determined experimentally. For example, whereas in 1979 there were only 25 recorded adsorption structures, to date there are more than 250. This volume is therefore a timely review of the state-of-the-art in this dynamic field.Chapter one contains a compilation of the structural data base on surfaces within a series of tables that allows direct comparison of structural parameters for related systems. Experimental structural trends amongst both clean surfaces and adsorbate systems are highlighted and discussed.The next chapter outlines the successes of local density ...
Active-site is the region at the central atom’s position where functional activated reactions occur in many materials. Hence, it is important for the present study of material sciences to take into consideration this information of atomic structures in the reaction center of the localized impurities and catalyst and phase boundary and the photosynthetic reaction centers. However, it is very difficult to determine a three-dimensional atomic structure directly in the center positions of many functional materials.This book is written for readers to gain the basic knowledge of this “active-site”. It will benefit those who want to know the function and structure of the inorganic, organic and biological materials.