You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Starting from simple generalizations of factorials and binomial coefficients, this book gives a friendly and accessible introduction to q q-analysis, a subject consisting primarily of identities between certain kinds of series and products. Many applications of these identities to combinatorics and number theory are developed in detail. There are numerous exercises to help students appreciate the beauty and power of the ideas, and the history of the subject is kept consistently in view. The book has few prerequisites beyond calculus. It is well suited to a capstone course, or for self-study in combinatorics or classical analysis. Ph.D. students and research mathematicians will also find it useful as a reference.
The last two decades have witnessed a revolution in the realm of typography, with the virtual disappearance of hot-lead typesetting in favor of the so-called digital typesetting. The principle behind the new technology is simple: imagine a very fine mesh superimposed on a sheet of paper. Digital typesetting consists in darkening the appropriate pixels (tiny squares) of this mesh, in patterns corresponding to each character and symbol of the text being set. The actual darkening is done by some printing device, say a laser printer or phototypesetter, which must be told exactly where the ink should go. Since the mesh is very fine-the dashes surrounding this sentence are some six pixels thick, and more than 200 pixels long-the printer can only be controlled by a computer program, which takes a "high-level" description of the page in terms of text, fonts, and formatting commands, and digests all of that into "low-level" commands for the printer. TEX is such a program, created by Donald E. Knuth, a computer scientist at Stanford University.
This book examines the fundamental results of modern combinatorial representation theory. The exercises are interspersed with text to reinforce readers' understanding of the subject. In addition, each exercise is assigned a difficulty level to test readers' learning. Solutions and hints to most of the exercises are provided at the end.
An introduction, suitable for graduate students, showing connections to other areas of mathematics.
Brings into focus interconnections between combinatorics on the one hand and geometry, group theory, number theory, special functions, lattice packings, logic, topological embeddings, games, experimental dsigns, and sociological and biological applications on the other hand.
A Unified Account of Permutations in Modern CombinatoricsA 2006 CHOICE Outstanding Academic Title, the first edition of this bestseller was lauded for its detailed yet engaging treatment of permutations. Providing more than enough material for a one-semester course, Combinatorics of Permutations, Second Edition continues to clearly show the usefuln
Modeling is now one of the most efficient methodologies in life sciences. From practice to theory, this book develops this approach illustrated by many examples; general concepts and the current state of the art are also presented and discussed. An historical and general introduction informs the reader how mathematics and formal tools are used to solve biological problems at all levels of the organization of life. The core of this book explains how this is done, based on practical examples coming, for the most part, from the author’s personal experience. In most cases, data are included so that the reader can follow the reasoning process and even reproduce calculus. The final chapter is devoted to essential concepts and current developments. The main mathematical tools are presented in an appendix to the book and are written in an adapted language readable by scientists, professionals or students, with a basic knowledge of mathematics.
The European Charter for Regional or Minority Languages has been in force since 1998, but in France it has caused a heated debate and it has not been ratified. The questions raised include: should French regional languages be afforded protection? Is there a danger that their protection could lead to an assertion of regional identity that could threaten the cohesiveness of the state? Is there a threat to the official language? Can applying the principles of the charter, without going through the ratification process, effectively protect regional or minority languages? This colloquy sought to provide answers to these questions.
The European Congress of Mathematics, held every four years, has established itself as a major international mathematical event. Following those in Paris, 1992, Budapest, 1996, and Barcelona, 2000, the Fourth European Congress of Mathematics took place in Stockholm, Sweden, June 27 to July 2, 2004, with 913 participants from 65 countries. Apart from seven plenary and thirty three invited lectures, there were six Science Lectures covering the most relevant aspects of mathematics in science and technology. Moreover, twelve projects of the EU Research Training Networks in Mathematics and Information Sciences, as well as Programmes from the European Science Foundation in Physical and Engineering Sciences, were presented. Ten EMS Prizes were awarded to young European mathematicians who have made a particular contribution to the progress of mathematics. Five of the prizewinners were independently chosen by the 4ECM Scientific Committee as plenary or invited speakers. The other five prizewinners gave their lectures in parallel sessions. Most of these contributions are now collected in this volume, providing a permanent record of so much that is best in mathematics today.
Combinatorial reciprocity is a very interesting phenomenon, which can be described as follows: A polynomial, whose values at positive integers count combinatorial objects of some sort, may give the number of combinatorial objects of a different sort when evaluated at negative integers (and suitably normalized). Such combinatorial reciprocity theorems occur in connections with graphs, partially ordered sets, polyhedra, and more. Using the combinatorial reciprocity theorems as a leitmotif, this book unfolds central ideas and techniques in enumerative and geometric combinatorics. Written in a friendly writing style, this is an accessible graduate textbook with almost 300 exercises, numerous illustrations, and pointers to the research literature. Topics include concise introductions to partially ordered sets, polyhedral geometry, and rational generating functions, followed by highly original chapters on subdivisions, geometric realizations of partially ordered sets, and hyperplane arrangements.