You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
1. Introduction : Dependence modeling / D. Kurowicka -- 2. Multivariate copulae / M. Fischer -- 3. Vines arise / R.M. Cooke, H. Joe and K. Aas -- 4. Sampling count variables with specified Pearson correlation : A comparison between a naive and a C-vine sampling approach / V. Erhardt and C. Czado -- 5. Micro correlations and tail dependence / R.M. Cooke, C. Kousky and H. Joe -- 6. The Copula information criterion and Its implications for the maximum pseudo-likelihood estimator / S. Gronneberg -- 7. Dependence comparisons of vine copulae with four or more variables / H. Joe -- 8. Tail dependence in vine copulae / H. Joe -- 9. Counting vines / O. Morales-Napoles -- 10. Regular vines : Generatio...
This volume consists of twenty-four papers selected by the editors from the sixty-one papers presented at the 1st International Conference on Mathemati cal Methods in Reliability held at the Politehnica University of Bucharest from 16 to 19 September 1997. The papers have been divided into three sections: statistical methods, probabilistic methods, and special techniques and appli cations. Of course, as with any classification, some papers could be as well assigned to other sections. Problems in reliability are encountered in items in everyday usage. Relia bility is an important feature of household appliances, cars, telephones, power supplies, and so on, whether viewed from the vantage of t...
Mathematical models are used to simulate complex real-world phenomena in many areas of science and technology. Large complex models typically require inputs whose values are not known with certainty. Uncertainty analysis aims to quantify the overall uncertainty within a model, in order to support problem owners in model-based decision-making. In recent years there has been an explosion of interest in uncertainty analysis. Uncertainty and dependence elicitation, dependence modelling, model inference, efficient sampling, screening and sensitivity analysis, and probabilistic inversion are among the active research areas. This text provides both the mathematical foundations and practical applica...
This book presents thirty-one extensive and carefully edited chapters providing an up-to-date survey of new models and methods for reliability analysis and applications in science, engineering, and technology. The chapters contain broad coverage of the latest developments and innovative techniques in a wide range of theoretical and numerical issues in the field of statistical and probabilistic methods in reliability.
A collection of papers presented at the PSAM 7 – ESREL ’04 conference in June 2004, reflecting a wide variety of disciplines, such as principles and theory of reliability and risk analysis, systems modelling and simulation, consequence assessment, human and organisational factors, structural reliability methods, software reliability and safety, insights and lessons from risk studies and management/decision making. This volume covers both well-established practices and open issues in these fields, identifying areas where maturity has been reached and those where more development is needed.
This book aims to solve some key problems in the decision and optimization procedure for power market organizers and participants in data-driven approaches. It begins with an overview of the power market data and analyzes on their characteristics and importance for market clearing. Then, the first part of the book discusses the essential problem of bus load forecasting from the perspective of market organizers. The related works include load uncertainty modeling, bus load bad data correction, and monthly load forecasting. The following part of the book answers how much information can be obtained from public data in locational marginal price (LMP)-based markets. It introduces topics such as ...
ICEM2014 is to offer scholars, professionals, academics and graduate students to present, share, and discuss their studies from various perspectives in the aspects of social science. The ICEM2014 is hosted by Advance Information Science Research Center and is sponsored by DEStech Publication, Inc., South China University of Technology, Guangdong University of Foreign Studies. This proceedings tends to collect the up-to-date, comprehensive and worldwide state-of-art knowledge on economics and management. All of accepted papers were subjected to strict peer- reviewing by 2–4 expert referees. The papers have been selected for this proceedings based on originality, significance, and clarity fo...
Advances in Mathematical Modeling for Reliability discusses fundamental issues on mathematical modeling in reliability theory and its applications. Beginning with an extensive discussion of graphical modeling and Bayesian networks, the focus shifts towards repairable systems: a discussion about how sensitive availability calculations parameter choices, and emulators provide the potential to perform such calculations on complicated systems to a fair degree of accuracy and in a computationally efficient manner. Another issue that is addressed is how competing risks arise in reliability and maintenance analysis through the ways in which data is censored. Mixture failure rate modeling is also a point of discussion, as well as the signature of systems, where the properties of the system through the signature from the probability distributions on the lifetime of the components are distinguished. The last three topics of discussion are relations among aging and stochastic dependence, theoretical advances in modeling, inference and computation, and recent advances in recurrent event modeling and inference.
Dependence Modeling with Copulas covers the substantial advances that have taken place in the field during the last 15 years, including vine copula modeling of high-dimensional data. Vine copula models are constructed from a sequence of bivariate copulas. The book develops generalizations of vine copula models, including common and structured factor models that extend from the Gaussian assumption to copulas. It also discusses other multivariate constructions and parametric copula families that have different tail properties and presents extensive material on dependence and tail properties to assist in copula model selection. The author shows how numerical methods and algorithms for inference and simulation are important in high-dimensional copula applications. He presents the algorithms as pseudocode, illustrating their implementation for high-dimensional copula models. He also incorporates results to determine dependence and tail properties of multivariate distributions for future constructions of copula models.