Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Learning Bayesian Models with R
  • Language: en
  • Pages: 168

Learning Bayesian Models with R

Become an expert in Bayesian Machine Learning methods using R and apply them to solve real-world big data problems About This Book Understand the principles of Bayesian Inference with less mathematical equations Learn state-of-the art Machine Learning methods Familiarize yourself with the recent advances in Deep Learning and Big Data frameworks with this step-by-step guide Who This Book Is For This book is for statisticians, analysts, and data scientists who want to build a Bayes-based system with R and implement it in their day-to-day models and projects. It is mainly intended for Data Scientists and Software Engineers who are involved in the development of Advanced Analytics applications. ...

Hands-On Ensemble Learning with R
  • Language: en
  • Pages: 376

Hands-On Ensemble Learning with R

Explore powerful R packages to create predictive models using ensemble methods Key Features Implement machine learning algorithms to build ensemble-efficient models Explore powerful R packages to create predictive models using ensemble methods Learn to build ensemble models on large datasets using a practical approach Book Description Ensemble techniques are used for combining two or more similar or dissimilar machine learning algorithms to create a stronger model. Such a model delivers superior prediction power and can give your datasets a boost in accuracy. Hands-On Ensemble Learning with R begins with the important statistical resampling methods. You will then walk through the central tri...

Statistical Inference
  • Language: en
  • Pages: 956

Statistical Inference

This treatment of probability and statistics examines discrete and continuous models, functions of random variables and random vectors, large-sample theory, more. Hundreds of problems (some with solutions). 1984 edition. Includes 144 figures and 35 tables.

Data analytics using R
  • Language: en
  • Pages: 580

Data analytics using R

  • Type: Book
  • -
  • Published: 2018
  • -
  • Publisher: Unknown

None

Bioinformatics in Agriculture
  • Language: en
  • Pages: 707

Bioinformatics in Agriculture

Bioinformatics in Agriculture: Next Generation Sequencing Era is a comprehensive volume presenting an integrated research and development approach to the practical application of genomics to improve agricultural crops. Exploring both the theoretical and applied aspects of computational biology, and focusing on the innovation processes, the book highlights the increased productivity of a translational approach. Presented in four sections and including insights from experts from around the world, the book includes: Section I: Bioinformatics and Next Generation Sequencing Technologies; Section II: Omics Application; Section III: Data mining and Markers Discovery; Section IV: Artificial Intellig...

Statistics for Machine Learning
  • Language: en
  • Pages: 438

Statistics for Machine Learning

Build Machine Learning models with a sound statistical understanding. About This Book Learn about the statistics behind powerful predictive models with p-value, ANOVA, and F- statistics. Implement statistical computations programmatically for supervised and unsupervised learning through K-means clustering. Master the statistical aspect of Machine Learning with the help of this example-rich guide to R and Python. Who This Book Is For This book is intended for developers with little to no background in statistics, who want to implement Machine Learning in their systems. Some programming knowledge in R or Python will be useful. What You Will Learn Understand the Statistical and Machine Learning...

Collaborative Enterprise Architecture
  • Language: en
  • Pages: 324

Collaborative Enterprise Architecture

  • Type: Book
  • -
  • Published: 2012-08-29
  • -
  • Publisher: Newnes

Why collaborative enterprise architecture? -- What is enterprise architecture -- What enterprise architects do: core activities of EA -- EA frameworks -- EA maturity models -- Foundations of collaborative EA -- Towards pragmatism: lean and agile EA -- Inviting to participation: eam 2.0 -- The next steps: taking collaborative EA forward.

Python for R Users
  • Language: en
  • Pages: 369

Python for R Users

The definitive guide for statisticians and data scientists who understand the advantages of becoming proficient in both R and Python The first book of its kind, Python for R Users: A Data Science Approach makes it easy for R programmers to code in Python and Python users to program in R. Short on theory and long on actionable analytics, it provides readers with a detailed comparative introduction and overview of both languages and features concise tutorials with command-by-command translations—complete with sample code—of R to Python and Python to R. Following an introduction to both languages, the author cuts to the chase with step-by-step coverage of the full range of pertinent program...

Python Data Science Essentials
  • Language: en
  • Pages: 373

Python Data Science Essentials

Become an efficient data science practitioner by understanding Python's key concepts About This Book Quickly get familiar with data science using Python 3.5 Save time (and effort) with all the essential tools explained Create effective data science projects and avoid common pitfalls with the help of examples and hints dictated by experience Who This Book Is For If you are an aspiring data scientist and you have at least a working knowledge of data analysis and Python, this book will get you started in data science. Data analysts with experience of R or MATLAB will also find the book to be a comprehensive reference to enhance their data manipulation and machine learning skills. What You Will ...

Computational Epigenetics and Diseases
  • Language: en
  • Pages: 452

Computational Epigenetics and Diseases

Computational Epigenetics and Diseases, written by leading scientists in this evolving field, provides a comprehensive and cutting-edge knowledge of computational epigenetics in human diseases. In particular, the major computational tools, databases, and strategies for computational epigenetics analysis, for example, DNA methylation, histone modifications, microRNA, noncoding RNA, and ceRNA, are summarized, in the context of human diseases. This book discusses bioinformatics methods for epigenetic analysis specifically applied to human conditions such as aging, atherosclerosis, diabetes mellitus, schizophrenia, bipolar disorder, Alzheimer disease, Parkinson disease, liver and autoimmune diso...