You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This text employs basic techniques of univariate and multivariate statistics for the analysis of time series and signals.
During the last two decades, considerable progress has been made in statistical time series analysis. The aim of this book is to present a survey of one of the most active areas in this field: the identification of autoregressive moving-average models, i.e., determining their orders. Readers are assumed to have already taken one course on time series analysis as might be offered in a graduate course, but otherwise this account is self-contained. The main topics covered include: Box-Jenkins' method, inverse autocorrelation functions, penalty function identification such as AIC, BIC techniques and Hannan and Quinn's method, instrumental regression, and a range of pattern identification methods. Rather than cover all the methods in detail, the emphasis is on exploring the fundamental ideas underlying them. Extensive references are given to the research literature and as a result, all those engaged in research in this subject will find this an invaluable aid to their work.
The subject of time series is of considerable interest, especiallyamong researchers in econometrics, engineering, and the naturalsciences. As part of the prestigious Wiley Series in Probabilityand Statistics, this book provides a lucid introduction to thefield and, in this new Second Edition, covers the importantadvances of recent years, including nonstationary models, nonlinearestimation, multivariate models, state space representations, andempirical model identification. New sections have also been addedon the Wold decomposition, partial autocorrelation, long memoryprocesses, and the Kalman filter. Major topics include: * Moving average and autoregressive processes * Introduction to Fourier analysis * Spectral theory and filtering * Large sample theory * Estimation of the mean and autocorrelations * Estimation of the spectrum * Parameter estimation * Regression, trend, and seasonality * Unit root and explosive time series To accommodate a wide variety of readers, review material,especially on elementary results in Fourier analysis, large samplestatistics, and difference equations, has been included.
Smoothness Priors Analysis of Time Series addresses some of the problems of modeling stationary and nonstationary time series primarily from a Bayesian stochastic regression "smoothness priors" state space point of view. Prior distributions on model coefficients are parametrized by hyperparameters. Maximizing the likelihood of a small number of hyperparameters permits the robust modeling of a time series with relatively complex structure and a very large number of implicitly inferred parameters. The critical statistical ideas in smoothness priors are the likelihood of the Bayesian model and the use of likelihood as a measure of the goodness of fit of the model. The emphasis is on a general state space approach in which the recursive conditional distributions for prediction, filtering, and smoothing are realized using a variety of nonstandard methods including numerical integration, a Gaussian mixture distribution-two filter smoothing formula, and a Monte Carlo "particle-path tracing" method in which the distributions are approximated by many realizations. The methods are applicable for modeling time series with complex structures.
An Introduction to Probability and Statistical Inference, Third Edition, guides the reader through probability models and statistical methods to develop critical-thinking skills. Written by award-winning author George Roussas, this valuable text introduces a thinking process to help them obtain the best solution to a posed question or situation, and provides a plethora of examples and exercises to illustrate applying statistical methods to different situations. - Offers a relatively rigorous, yet accessible, mathematical discussion of probability theory and statistical inference important to students in a broad variety of disciplines - Includes relevant proofs and exercises with useful hints to their solutions - Provides brief answers to even-numbered exercises at the back of the book and detailed solutions to all exercises available to qualified instructors in the Solutions Manual
For some fields such as econometrics (Shore, 1980), oil prospecting (Claerbout, 1976), speech recognition (Levinson and Lieberman, 1981), satellite monitoring (Lavergnat et al., 1980), epilepsy diagnosis (Gersch and Tharp, 1977), and plasma physics (Bloomfield, 1976), there is a need to obtain an estimate of the spectral density (when it exists) in order to gain at least a crude understanding of the frequency content of time series data. An outstanding tutorial on the classical problem of spectral density estimation is given by Kay and Marple (1981). For an excellent collection of fundamental papers dealing with modern spec tral density estimation as well as an extensive bibliography on othe...
A wide range of topics and perspectives in the field of statistics are brought together in this volume. The contributions originate from invited papers presented at an international conference which was held in honour of C. Radhakrishna Rao, one of the most eminent statisticians of our time and a distinguished scientist.
Provides a self-contained comprehensive treatment of both one-sample and K-sample goodness-of-fit methods by linking them to a common theory backbone Contains many data examples, including R-code and a specific R-package for comparing distributions Emphesises informative statistical analysis rather than plain statistical hypothesis testing
The 2012 International Symposium on Management Intelligent Systems is believed to be the first international forum to present and discuss original, rigorous and significant contributions on Artificial Intelligence-based (AI) solutions—with a strong, practical logic and, preferably, with empirical applications—developed to aid the management of organizations in multiple areas, activities, processes and problem-solving; i.e., what we propose to be named as Management Intelligent Systems (MiS). The three-day event aimed to bring together researchers interested in this promising interdisciplinary field who came from areas as varied as management, marketing, and business in general, computer ...