You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book is based on the results of many years of experimental work by the author and his colleagues, dealing with the electronic properties of organic crystals. E. Silinsh has played a leading role in pOinting out the importance of the polarization energy by an excess carrier, in determining not only the character of the carrier mobility in organic crystals, but in determining the band gap and the nature of the all-important trapping site in these crystals. The one-electron model of electronic conductivity that has been so successful in dealing with inorganic semiconductors is singular ly unsuccessful in rationalizing the unusual physical properties of organic crystals. A many-body theory ...
For years, concepts and models relevant to the fields of molecular electronics and organic electronics have been invented in parallel, slowing down progress in the field. This book illustrates how synthetic chemists, materials scientists, physicists, and device engineers can work together to reach their desired, shared goals, and provides the knowledge and intellectual basis for this venture. Supramolecular Materials for Opto-Electronics covers the basic principles of building supramolecular organic systems that fulfil the requirements of the targeted opto-electronic function; specific material properties based on the fundamental synthesis and assembly processes; and provides an overview of the current uses of supramolecular materials in opto-electronic devices. To conclude, a "what's next" section provides an outlook on the future of the field, outlining the ways overarching work between research disciplines can be utilised. Postgraduate researchers and academics will appreciate the fundamental insight into concepts and practices of supramolecular systems for opto-electronic device integration.
None
None
The papers included in this issue of ECS Transactions were originally presented in the symposium ¿Organic Semiconductor Materials and Devices¿, held during the 212th meeting of The Electrochemical Society, in Washington, DC, from October 7 to 12, 2007.
Defect control in semiconductors is a key technology for realizing the ultimate possibilities of modern electronics. The basis of such control lies in an integrated knowledge of a variety of defect properties. From this viewpoint, the volume discusses defect-related problems in connection with defect control in semiconducting materials, such as silicon, III-V, II-VI compounds, organic semiconductors, heterostructure, etc.The conference brought together scientists in the field of fundamental research and engineers involved in application related to electronic devices in order to promote future research activity in both fields and establish a fundamental knowledge of defect control. The main emphasis of the 254 papers presented in this volume is on the control of the concentration, distribution, structural and electronic states of any types of defects including impurities as well as control of the electrical, optical and other activities of defects. Due to the extensive length of the contents, only the number of papers presented per session is listed below.
The MRS Symposium Proceeding series is an internationally recognised reference suitable for researchers and practitioners.