You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
High Voltage and Electrical Insulation Engineering A comprehensive graduate-level textbook on high voltage insulation engineering, updated to reflect emerging trends and techniques in the field High Voltage and Electrical Insulation Engineering presents systematic coverage of the behavior of dielectric materials. This classic textbook opens with clear explanations of fundamental terminology, electric-field classification, and field estimation techniques. Subsequent chapters describe the field dependent performance of gaseous, vacuum, liquid, and solid dielectrics under different classified field conditions, and illustrate the monitoring of electrical insulation conditions by both single and ...
An insulator, also called a dielectric, is a material that resists the flow of electric current. An insulating material has atoms with tightly bonded valence electrons. These materials are used in parts of electrical equipment, also called insulators or insulation, intended to support or separate electrical conductors without passing current through themselves. Some materials such as glass, paper or Teflon are very good electrical insulators. This book presents topical research data in the study of insulators, including design and development of a new type of ferromagnetic insulator; insulator inspection technologies; high-k dielectric insulators used in low-voltage organic field-effect transistors; the electrodynamics of Mott insulators and insulator-to-metal transitions; and, the leakage current on high voltage contaminated insulators.
In electrical engineering manufacturing, one of the most important processes stems from making sure the material used to distribute the electrical current is safe and operating correctly. The precarious nature of electricity makes developing innovative material for advanced safety a high-ranking priority for researchers. Electrical Insulation Breakdown and Its Theory, Process, and Prevention: Emerging Research and Opportunities provides innovative insights into the latest developments and achievements in high voltage insulation breakdown. Featuring topics such as nanodielectrics, thermal stability, and transmission technology, it is designed for engineers, including those that work with high voltage power systems, researchers, practitioners, professionals, and students interested in the upkeep and practice of electric material safety.
Covers the design, operations, diagnostics and testing of electrical insulation in high-voltage power networks. The book presents the fundamental properties of dielectrics essential for the optimum design of power systems. It provides a survey of advanced digital and electro-optic techniques used in both the field and research.
Covering virtually all classes of insulating materials for electrical and electronic applications, this handbook offers immediate access to detailed information in one easy-to-use source. Included are major producers, technologies, methods of manufacture, trades, applicable standards and specifications, properties, uses, development programs, and market trends. Complete with a wealth of data and lacking in technical jargon, this book will be invaluable to electrical and electronics engineers who need to make informed choices about dielectric and electrical insulation materials as well as electrical engineering students in need of a comprehensive reference.
This book covers major components of a high voltage system and the different insulating materials applied in equipment, identifying measurable materials suitable for condition assessment, and also analyses insulation fault scenarios that may occur in power equipment.
Learn to correct icing and pollution problems in electrical line insulation Written by prominent experts in the field, this book takes an in-depth look at the issues of electrical insulators for icing and polluted environments. It shows: Engineers and environmental specialists how to carry out appropriate insulator contamination measurements, understand how these readings change with time and weather, and work out how the readings compare with the upper limits set by insulator dimensions in their existing stations Design engineers how to assess the likely maximum pollution and icing limits at a substation or along an overhead line, and then select insulators that have appropriate withstand m...
High-voltage electrophysical systems used for research in physics are becoming more and more common in engineering applications, as electrical insulation comprises one of the most important constituent components. This is the first monograph dealing comprehensively and on a scientific level with the insulation of such systems. In the first part of the book, the operating conditions and necessary requirements are analyzed, while the main insulation types are outlined. The second part describes the short- and long-term strengths of vacuums and gases, as well as liquid, solid, and hybrid dielectrics as functions of various influencing factors. The third and last part is devoted to the design of high-voltage insulation systems. The knowledge provided by this book will be useful to physicists designing experimental high-voltage devices as well as to electrical engineers in high-voltage technology, electrical insulation, and cable industries.