You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Awarded the Dexter Prize by the Society for the History of Technology, this book offers a comparative history of the evolution of modern electric power systems. It described large-scale technological change and demonstrates that technology cannot be understood unless placed in a cultural context.
None
Probability theory, like much of mathematics, is indebted to physics as a source of problems and intuition for solving these problems. Unfortunately, the level of abstraction of current mathematics often makes it difficult for anyone but an expert to appreciate this fact. Random Walks and electric networks looks at the interplay of physics and mathematics in terms of an example—the relation between elementary electric network theory and random walks —where the mathematics involved is at the college level.
This revised and updated edition introduces references to modern topics such as Distributed Generation, Smart Grid and Standard IEC 61850.
This study outlines the theoretical and practical aspects which are relevant to the design of distribution networks, particularly the increased use of computers in their design and operation. The edition has been revised to include material on electromagnetic compatibility and legislation.
The book is devoted to the solution of the problem of determining the presence of corona discharge on electrical equipment with acoustic radiation. It is shown that corona discharge leads not only to irreversible losses of electrical energy, but also interferes with the transmission of high-frequency signals, deteriorates insulating elements, can become a source of conditions for the occurrence of a destructive arc discharge and is one of the factors of changing the continuity of the electrical system as a whole. The book describes the processes in a corona discharge that lead to the occurrence of acoustic waves. The authors analyzed acoustic radiation from a corona discharge reproduced in l...
Electric Vehicle Integration into Modern Power Networks provides coverage of the challenges and opportunities posed by the progressive integration of electric drive vehicles. Starting with a thorough overview of the current electric vehicle and battery state-of-the-art, this work describes dynamic software tools to assess the impacts resulting from the electric vehicles deployment on the steady state and dynamic operation of electricity grids, identifies strategies to mitigate them and the possibility to support simultaneously large-scale integration of renewable energy sources. New business models and control management architectures, as well as the communication infrastructure required to integrate electric vehicles as active demand are presented. Finally, regulatory issues of integrating electric vehicles into modern power systems are addressed. Inspired by two courses held under the EES-UETP umbrella in 2010 and 2011, this contributed volume consists of nine chapters written by leading researchers and professionals from the industry as well as academia.