Welcome to our book review site go-pdf.online!

You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.

Sign up

Advances in String Theory
  • Language: en
  • Pages: 259

Advances in String Theory

"Over the past decade string theory has had an increasing impact on many areas of physics: high energy and hadronic physics, gravitation and cosmology, mathematical physics and even condensed matter physics. The impact has been through many major conceptual and methodological developments in quantum field theory in the past fifteen years. In addition, string theory has exerted a dramatic influence on developments in contemporary mathematics, including Gromov-Witten theory, mirror symmetry in complex and symplectic geometry, and important ramifications in enumerative geometry." "This volume is derived from a conference of younger leading practitioners around the common theme: "What is string theory?" The talks covered major current topics, both mathematical and physical, related to string theory. Graduate students and research mathematicians interested in string theory in mathematics and physics will be interested in this workshop."--BOOK JACKET.

Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties
  • Language: en
  • Pages: 92

Gromov-Witten Theory of Quotients of Fermat Calabi-Yau Varieties

Gromov-Witten theory started as an attempt to provide a rigorous mathematical foundation for the so-called A-model topological string theory of Calabi-Yau varieties. Even though it can be defined for all the Kähler/symplectic manifolds, the theory on Calabi-Yau varieties remains the most difficult one. In fact, a great deal of techniques were developed for non-Calabi-Yau varieties during the last twenty years. These techniques have only limited bearing on the Calabi-Yau cases. In a certain sense, Calabi-Yau cases are very special too. There are two outstanding problems for the Gromov-Witten theory of Calabi-Yau varieties and they are the focus of our investigation.

2021-2022 MATRIX Annals
  • Language: en
  • Pages: 905

2021-2022 MATRIX Annals

MATRIX is Australia’s international and residential mathematical research institute. It facilitates new collaborations and mathematical advances through intensive residential research programs, each 1-2 weeks in duration. This book is a scientific record of the 24 programs held at MATRIX in 2021-2022, including tandem workshops with Mathematisches Forschungsinstitut Oberwolfach (MFO), with Research Institute for Mathematical Sciences Kyoto University (RIMS), and with Sydney Mathematical Research Institute (SMRI).

Lectures and Surveys on G2-Manifolds and Related Topics
  • Language: en
  • Pages: 392

Lectures and Surveys on G2-Manifolds and Related Topics

This book, one of the first on G2 manifolds in decades, collects introductory lectures and survey articles largely based on talks given at a workshop held at the Fields Institute in August 2017, as part of the major thematic program on geometric analysis. It provides an accessible introduction to various aspects of the geometry of G2 manifolds, including the construction of examples, as well as the intimate relations with calibrated geometry, Yang-Mills gauge theory, and geometric flows. It also features the inclusion of a survey on the new topological and analytic invariants of G2 manifolds that have been recently discovered. The first half of the book, consisting of several introductory lectures, is aimed at experienced graduate students or early career researchers in geometry and topology who wish to familiarize themselves with this burgeoning field. The second half, consisting of numerous survey articles, is intended to be useful to both beginners and experts in the field.

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry
  • Language: en
  • Pages: 480

Integrability, Quantization, and Geometry: II. Quantum Theories and Algebraic Geometry

This book is a collection of articles written in memory of Boris Dubrovin (1950–2019). The authors express their admiration for his remarkable personality and for the contributions he made to mathematical physics. For many of the authors, Dubrovin was a friend, colleague, inspiring mentor, and teacher. The contributions to this collection of papers are split into two parts: “Integrable Systems” and “Quantum Theories and Algebraic Geometry”, reflecting the areas of main scientific interests of Dubrovin. Chronologically, these interests may be divided into several parts: integrable systems, integrable systems of hydrodynamic type, WDVV equations (Frobenius manifolds), isomonodromy equations (flat connections), and quantum cohomology. The articles included in the first part are more or less directly devoted to these areas (primarily with the first three listed above). The second part contains articles on quantum theories and algebraic geometry and is less directly connected with Dubrovin's early interests.

Modular Forms and String Duality
  • Language: en
  • Pages: 320

Modular Forms and String Duality

"This book is a testimony to the BIRS Workshop, and it covers a wide range of topics at the interface of number theory and string theory, with special emphasis on modular forms and string duality. They include the recent advances as well as introductory expositions on various aspects of modular forms, motives, differential equations, conformal field theory, topological strings and Gromov-Witten invariants, mirror symmetry, and homological mirror symmetry. The contributions are roughly divided into three categories: arithmetic and modular forms, geometric and differential equations, and physics and string theory. The book is suitable for researchers working at the interface of number theory and string theory."--BOOK JACKET.

Strings, Gauge Fields, and the Geometry Behind
  • Language: en
  • Pages: 566

Strings, Gauge Fields, and the Geometry Behind

This book contains exclusively invited contributions from collaborators of Maximilian Kreuzer, giving accounts of his scientific legacy and original articles from renowned theoretical physicists and mathematicians, including Victor Batyrev, Philip Candelas, Michael Douglas, Alexei Morozov, Joseph Polchinski, Peter van Nieuwenhuizen, and Peter West. Besides a collection of review and research articles from high-profile researchers in string theory and related fields of mathematics (in particular, algebraic geometry) which discuss recent progress in the exploration of string theory vacua and corresponding mathematical developments, this book contains a pedagogical account of the important work...

Quantum Field Theory: Perspective and Prospective
  • Language: en
  • Pages: 417

Quantum Field Theory: Perspective and Prospective

It has been said that `String theorists talk to string theorists and everyone else wonders what they are saying'. This book will be a great help to those researchers who are challenged by modern quantum field theory. Quantum field theory experienced a renaissance in the late 1960s. Here, participants in the Les Houches sessions of 1970/75, now key players in quantum field theory and its many impacts, assess developments in their field of interest and provide guidance to young researchers challenged by these developments, but overwhelmed by their complexities. The book is not a textbook on string theory, rather it is a complement to Polchinski's book on string theory. It is a survey of current problems which have their origin in quantum field theory.

Recent Advances in Hodge Theory
  • Language: en
  • Pages: 533

Recent Advances in Hodge Theory

Combines cutting-edge research and expository articles in Hodge theory. An essential reference for graduate students and researchers.

String-Math 2013
  • Language: en
  • Pages: 386

String-Math 2013

This volume contains the proceedings of the conference `String-Math 2013' which was held June 17-21, 2013 at the Simons Center for Geometry and Physics at Stony Brook University. This was the third in a series of annual meetings devoted to the interface of mathematics and string theory. Topics include the latest developments in supersymmetric and topological field theory, localization techniques, the mathematics of quantum field theory, superstring compactification and duality, scattering amplitudes and their relation to Hodge theory, mirror symmetry and two-dimensional conformal field theory, and many more. This book will be important reading for researchers and students in the area, and for all mathematicians and string theorists who want to update themselves on developments in the math-string interface.