You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
This book features 35 of best papers from the 9th European Science Education Research Association Conference, ESERA 2011, held in Lyon, France, September 5th-9th 2011. The ESERA international conference featured some 1,200 participants from Africa, Asia, Australia, Europe as well as North and South America offering insight into the field at the end of the first decade of the 21st century. This book presents studies that represent the current orientations of research in science education and includes studies in different educational traditions from around the world. It is organized into six parts around the three poles (content, students, teachers) and their interrelations of science education: after a general presentation of the volume (first part), the second part concerns SSI (Socio-Scientific Issues) dealing with new types of content, the third the teachers, the fourth the students, the fifth the relationships between teaching and learning, and the sixth the teaching resources and the curricula.
Each volume in the 7-volume series The World of Science Education reviews research in a key region of the world. These regions include North America, South and Latin America, Asia, Australia and New Zealand, Europe, Arab States, and Sub-Saharan Africa. The focus of this Handbook is on science education in Europe. In producing this volume the editors have invited a range of authors to describe their research in the context of developments in the continent and further afield. In reading this book you are invited to consider the historical, social and political contexts that have driven developments in science education research over the years. A unique feature of science education in Europe is the impact of the European Union on research and development over many years. A growing number of multi-national projects have contributed to the establishment of a community of researchers increasingly accepting of methodological diversity. That is not to say that Europe is moving towards homogeneity, as this volume clearly shows.
This edited volume presents innovative current research in the field of Science Education. The chapter's deal with a wide variety of topics and research approaches, conducted in a range of contexts and settings. Together they make a strong contribution to knowledge on science teaching and learning. The book consists of selected presentations from the 12th European Science Education Research Association (ESERA) Conference, held in Dublin, Ireland from 21st to 25th August, 2017. The ESERA community is made up of professionals with diverse disciplinary backgrounds from natural sciences to social sciences. This diversity enables a rich understanding of cognitive and affective aspects of science ...
In August 2005, over 500 researchers from the field of science education met at the 5th European Science Education Research Association conference. Two of the main topics at this conference were: the decrease in the number of students interested in school science and concern about the worldwide outcomes of studies on students’ scientific literacy. This volume includes edited versions of 37 outstanding papers presented, including the lectures of the keynote speakers.
This truly international volume includes a selection of contributions to the Second Conference of the European Science Education Research Association (Kiel, Sept. 1999). It provides a state-of-the-art examination of science education research in Europe, discusses views and visions of science education research, deals with research on scientific literacy, on students' and teachers' conceptions, on conceptual change, and on instructional media and lab work.
Bringing together a wide collection of ideas, reviews, analyses and new research on particulate and structural concepts of matter, Concepts of Matter in Science Education informs practice from pre-school through graduate school learning and teaching and aims to inspire progress in science education. The expert contributors offer a range of reviews and critical analyses of related literature and in-depth analysis of specific issues, as well as new research. Among the themes covered are learning progressions for teaching a particle model of matter, the mental models of both students and teachers of the particulate nature of matter, educational technology, chemical reactions and chemical phenom...
One of the most important and consistent voices in the reform of science education over the last thirty years has been that of Peter Fensham. His vision of a democratic and socially responsible science education for all has inspired change in schools and colleges throughout the world. Often moving against the tide, Fensham travelled the world to promote his radical ideology. He was appointed Australia's first Professor of Science Education, and was later made a Member of the Order of Australia in recognition of his work in this new and emerging field of study. In this unique book, leading science educators from around the world examine and discuss Fensham's key ideas. Each describes how his ...
This book offers a global presentation of issues under study for improving science education research in the context of the knowledge-based society at a European and international level. It includes discussions of several theoretical approaches, research overviews, research methodologies, and the teaching and learning of science. It is based on papers presented at the Third International Conference of the European Science Education Research Association (Thessaloniki, Greece, August 2001).
Emergent Science is essential reading for anyone involved in supporting scientific learning and development with young children aged between birth and 8. Drawing on theory, the book helps to develop the essential skills needed to understand and support science in this age range. The book is organised into three parts: development, contexts and pedagogy, exploring the underpinning theory alongside practical ideas to help trainees, teachers and childcare practitioners to create high-quality science experiences for the children they teach. The text includes guidance on developing professional, study and research skills to graduate and postgraduate level, as well as all the information needed to develop scientific skills, attitudes, understanding and language through concrete, social experiences for young children. Features include: Reflective tasks-at three levels of professional development;- early career/student, developing career/teacher and later career/leader. Case studies that exemplify good practice and practical ideas. Tools for learning - explain how science professionals can develop their professional, study skills and research skills to Masters level