You may have to Search all our reviewed books and magazines, click the sign up button below to create a free account.
Projective duality is a very classical notion naturally arising in various areas of mathematics, such as algebraic and differential geometry, combinatorics, topology, analytical mechanics, and invariant theory, and the results in this field were until now scattered across the literature. Thus the appearance of a book specifically devoted to projective duality is a long-awaited and welcome event. Projective Duality and Homogeneous Spaces covers a vast and diverse range of topics in the field of dual varieties, ranging from differential geometry to Mori theory and from topology to the theory of algebras. It gives a very readable and thorough account and the presentation of the material is clear and convincing. For the most part of the book the only prerequisites are basic algebra and algebraic geometry. This book will be of great interest to graduate and postgraduate students as well as professional mathematicians working in algebra, geometry and analysis.
This volume consolidates selected articles from the 2016 Apprenticeship Program at the Fields Institute, part of the larger program on Combinatorial Algebraic Geometry that ran from July through December of 2016. Written primarily by junior mathematicians, the articles cover a range of topics in combinatorial algebraic geometry including curves, surfaces, Grassmannians, convexity, abelian varieties, and moduli spaces. This book bridges the gap between graduate courses and cutting-edge research by connecting historical sources, computation, explicit examples, and new results.
The book covers topics in the theory of algebraic transformation groups and algebraic varieties which are very much at the frontier of mathematical research.
A collection of survey articles by leading young researchers, showcasing the vitality of Russian mathematics.
This two volume work on Positivity in Algebraic Geometry contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Volume I is more elementary than Volume II, and, for the most part, it can be read without access to Volume II.
Two volume work containing a contemporary account on "Positivity in Algebraic Geometry". Both volumes also available as hardcover editions as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete". A good deal of the material has not previously appeared in book form. Volume II is more at the research level and somewhat more specialized than Volume I. Volume II contains a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. Contains many concrete examples, applications, and pointers to further developments
This two volume work on "Positivity in Algebraic Geometry" contains a contemporary account of a body of work in complex algebraic geometry loosely centered around the theme of positivity. Topics in Volume I include ample line bundles and linear series on a projective variety, the classical theorems of Lefschetz and Bertini and their modern outgrowths, vanishing theorems, and local positivity. Volume II begins with a survey of positivity for vector bundles, and moves on to a systematic development of the theory of multiplier ideals and their applications. A good deal of this material has not previously appeared in book form, and substantial parts are worked out here in detail for the first time. At least a third of the book is devoted to concrete examples, applications, and pointers to further developments. Whereas Volume I is more elementary, the present Volume II is more at the research level and somewhat more specialized. Both volumes are also available as hardcover edition as Vols. 48 and 49 in the series "Ergebnisse der Mathematik und ihrer Grenzgebiete".
None
None